I want to use Python's multiprocessing to do concurrent processing without using locks (locks to me are the opposite of multiprocessing) because I want to build up multiple reports from different resources at the exact same time during a web request (normally takes about 3 seconds but with multiprocessing I can do it in .5 seconds).
My problem is that, if I expose such a feature to the web and get 10 users pulling the same report at the same time, I suddenly have 60 interpreters open at the same time (which would crash the system). Is this just the common sense result of using multiprocessing, or is there a trick to get around this potential nightmare?
Thanks
If you're really worried about having too many instances you could think about protecting the call with a Semaphore object. If I understand what you're doing then you can use the threaded semaphore object:
from threading import Semaphore
sem = Semaphore(10)
with sem:
make_multiprocessing_call()
I'm assuming that make_multiprocessing_call()
will cleanup after itself.
This way only 10 "extra" instances of python will ever be opened, if another request comes along it will just have to wait until the previous have completed. Unfortunately this won't be in "Queue" order ... or any order in particular.
Hope that helps