so I'm working on a project its for class "homework" if you will, but what it does is it takes in anime names and genres and if they are relevant or irrelevant I am trying to build a NaiveBayesClassifier with that and then I want to pass in genres and for it to tell me if it is relevant or irrelevant I currently have the following:
import nltk
trainingdata =[({'drama': True, 'mystery': True, 'horror': True, 'psychological': True}, 'relevant'), ({'drama': True, 'fantasy': True, 'romance': True, 'adventure': True, 'science fiction': True}, 'unrelevant')]
classifier = nltk.classify.naivebayes.NaiveBayesClassifier.train(trainingdata)
classifier.classify({'Fantasy': True, 'Comedy': True, 'Supernatural': True})
prob_dist = classifier.prob_classify(anime)
print "relevant " + str(prob_dist.prob("relevant"))
print "unrelevant " + str(prob_dist.prob("unrelevant"))
I currently have :
size of training array:110
the relevant length 57
the unrelevant length 53
Some results I receive :
relevant Tantei Opera Milky Holmes TD
input data passed to classify: {'Mystery': True, 'Comedy': True, 'Super': True, 'Power': True}
relevant 0.518018018018
unrelevant 0.481981981982
relevant Juuou Mujin no Fafnir
input data passed to classify :{'Romance': True, 'Fantasy': True, 'School': True}
relevant 0.518018018018
unrelevant 0.481981981982
So it looks like it's not reading my data correctly as 57/110 = .518018 But Im not sure what I am doing wrong...
I looked at this nltk NaiveBayesClassifier training for sentiment analysis
and i feel like I am doing it correctly.. The only thing I am not doing is specifying every specific key that isn't found in keys. Does that matter?
Thanks!
Some background, the OP purpose is to build a classifier for this purpose: https://github.com/alejandrovega44/CSCE-470-Anime-Recommender
Firstly, there are several methodological issues, i terms of what you're calling things.
You training data should be the raw data you're using for your task, i.e. the json file at: https://raw.githubusercontent.com/alejandrovega44/CSCE-470-Anime-Recommender/naive2/py/UserAnime2
And the data structure that you've in your question should be called a feature vector, i.e. :
({'drama': True, 'mystery': True, 'horror': True, 'psychological': True}, 'relevant')
({'drama': True, 'fantasy': True, 'romance': True, 'adventure': True, 'science fiction': True}, 'unrelevant')
The features in the training set in your sample code:
'drama'
'mystery'
'horror'
'psychological'
'fantasy',
'romance',
'adventure',
'science fiction'
But the features in your test set in your sample code are:
'Fantasy'
'Comedy'
'Supernatural'
'Mystery'
'Comedy'
'Super'
'Power'
'Romance'
'Fantasy'
'School'
Because strings are case sensitive, none of your feature in the test data occurs in your training data. Hence the default probability assigned would be 50%-50% for a binary class, i.e.:
import nltk
feature_vectors =[
({'drama': True, 'mystery': True, 'horror': True, 'psychological': True}, 'relevant'),
({'drama': True, 'fantasy': True, 'romance': True, 'adventure': True, 'science fiction': True}, 'unrelevant')]
classifier = nltk.classify.naivebayes.NaiveBayesClassifier.train(feature_vectors)
prob_dist = classifier.prob_classify({'Fantasy': True, 'Comedy': True, 'Supernatural': True})
print "relevant " + str(prob_dist.prob("relevant"))
print "unrelevant " + str(prob_dist.prob("unrelevant"))
[out]:
relevant 0.5
unrelevant 0.5
Even if you give the same documents but with capitalized features, the classifier won't know, e.g.:
import nltk
feature_vectors =[
({'drama': True, 'mystery': True, 'horror': True, 'psychological': True}, 'relevant'),
({'drama': True, 'fantasy': True, 'romance': True, 'adventure': True, 'science fiction': True}, 'unrelevant')]
classifier = nltk.classify.naivebayes.NaiveBayesClassifier.train(feature_vectors)
doc1 = {'drama': True, 'mystery': True, 'horror': True, 'psychological': True}
prob_dist = classifier.prob_classify(doc1)
print "relevant " + str(prob_dist.prob("relevant"))
print "unrelevant " + str(prob_dist.prob("unrelevant"))
print '----'
caps_doc1 = {'Drama': True, 'Mystery': True, 'Horror': True, 'Psychological':True }
prob_dist = classifier.prob_classify(caps_doc1)
print "relevant " + str(prob_dist.prob("relevant"))
print "unrelevant " + str(prob_dist.prob("unrelevant"))
print '----'
[out]:
relevant 0.964285714286
unrelevant 0.0357142857143
----
relevant 0.5
unrelevant 0.5
----
Without giving more details and a better sample code to debug, this is all we can help on the question. =(