I have ran into a problem relating to the drawing of the Ellipsoid.
The ellipsoid that I am drawing to draw is the following:
x**2/16 + y**2/16 + z**2/16 = 1.
So I saw a lot of references relating to calculating and plotting of an Ellipse void and in multiple questions a cartesian to spherical or vice versa calculation was mentioned.
Ran into a website that had a calculator for it, but I had no idea on how to successfully perform this calculation. Also I am not sure as to what the linspaces should be set to. Have seen the ones that I have there as defaults, but as I got no previous experience with these libraries, I really don't know what to expect from it.
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure(figsize=plt.figaspect(1)) # Square figure
ax = fig.add_subplot(111, projection='3d')
multip = (1, 1, 1)
# Radii corresponding to the coefficients:
rx, ry, rz = 1/np.sqrt(multip)
# Spherical Angles
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
# Cartesian coordinates
#Lots of uncertainty.
#x =
#y =
#z =
# Plot:
ax.plot_surface(x, y, z, rstride=4, cstride=4, color='b')
# Axis modifications
max_radius = max(rx, ry, rz)
for axis in 'xyz':
getattr(ax, 'set_{}lim'.format(axis))((-max_radius, max_radius))
plt.show()
Your ellipsoid is not just an ellipsoid, it's a sphere.
Notice that if you use the substitution formulas written below for x, y and z, you'll get an identity. It is in general easier to plot such a surface of revolution in a different coordinate system (spherical in this case), rather than attempting to solve an implicit equation (which in most plotting programs ends up jagged, unless you take some countermeasures).
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
phi = np.linspace(0,2*np.pi, 256).reshape(256, 1) # the angle of the projection in the xy-plane
theta = np.linspace(0, np.pi, 256).reshape(-1, 256) # the angle from the polar axis, ie the polar angle
radius = 4
# Transformation formulae for a spherical coordinate system.
x = radius*np.sin(theta)*np.cos(phi)
y = radius*np.sin(theta)*np.sin(phi)
z = radius*np.cos(theta)
fig = plt.figure(figsize=plt.figaspect(1)) # Square figure
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(x, y, z, color='b')