Search code examples
objective-cios7sprite-kitpath-finding

Using Pathfinding, such as A*, for NPC's & character without Tiles


I've been reading a book called "iOS Games by Tutorials" (recommend it to anyone interested in making iPhone games) & I'm learning how to make Tiled Maps with Sprite Kit with an overhead view (like the legend of zelda link's awakening). So far, I have made a tiled map using tiles that are 32x32, placed the player character & several NPC's into the world. Even made the NPC's randomly move around the map, though the way it teaches in the book is having them move from tile to tile (any of the 8 tiles surrounding the NPC at any time - if a tile has some property such as categoryBitMask then it won't move to that tile).

I am going to change NPC movement to physics-based (which is its own problem) just like the player character has right now (which means NPC's will collide with objects that have a physicsBody like the player character does). It's more fluid & dynamic.

But here is where the question begins. I want to implement Pathfinding (such as the A* algorithm) into the NPC & player character movement due to the map containing buildings, water, trees, etc. with their own physicsBodies. It's one thing to limit NPC's random movement or to force them to walk a predetermined path (which will kill the point of this game), but it's another to have to tap the screen very often to have the player character avoid all the buildings/trees he has to walk past. I don't want to use a grid system. Is it possible to implement some pathfinding algorithm into x,y coordinates? Is this more resource intensive? Could you share your thoughts about this?

Thank you.


Solution

  • This is a very interesting topic.

    There are algorithms for finding paths in continuous spaces. For example, you can use a potential based method with the objective having a very low potential and obstacles being "hills" (perhaps infinitely high, although this requires a bit of care). The downside of potential methods is that you have to take special precautions to keep them from getting stuck at a local minimum. Situations like this

            P
     +----+
     |   M|
     |    |
     + ---+
    

    Where M is a monster trying to get to the player, P can occur. In the example, the monster is at a local minimum, and it would have to go to a higher potential in order to get out the door at the lower left of the building. A variant of potential algorithms (in fact, it's often useful to reduce it to one), is to assign anti-gravity to obstacles and gravity to objectives. This is also somewhat non-deterministic and requires special precautions to avoid getting "stuck".

    As @rickster points out, SpriteKit provides an SKFieldNode class that can help you implement a potential based solution.

    Other approaches include "wall following" (for example, Pledge's algorithm) and are useful for finding your way around in a maze like environment.

    One drawback to continuous methods is that NPC movement will often seem a bit unnatural -- for example, even if our monster in the example above is able to decide that it's at a local minimum and increase the "temperature" of it's search (that is, make larger moves, perhaps at random, against the potential gradient), it will bounce around instead of going straight for the door.

    An alternative to searching in continuous spaces is to quantize the space. A simple method is to tile it, cover it with polygons, or represent it as a quadtree. Essentially, you want to have a way of mapping every point in the continuous space to a vertex on a graph representing the quantized space. At this point, graph search algorithms like A* and friends are applicable.

    Graph search is somewhat resource intensive, but for a 2d zelda like game, it should be doable on a mobile device, especially with various optimizations like only "waking up" NPCs that are within a certain distance of the player (think aggro).

    This page is a bit thin on implementation details, but it'll give you the right terms to google.

    As always, start simple and iterate. Tiling is incredibly easy, and will let you experiment with the graph search method before optimizing.