i was using the weka interface to do some classification using the MultilayerPerceptron.
My class is numeric and i am trying now to do the classification from command line... so i can leave the computer doing the simulation using a lot of files.
I was trying to use the
java -classpath weka.jar weka.classifiers.meta.FilteredClassifier -t ~/Desktop/arff/3x3-noextra.arff -W weka.classifiers.functions.MultilayerPerceptron -- -L 0.4 -M 0.5 -N 500 -V 0 -S 0 -E 20 -H a
Command as a test, but because my class is numeric i get the:
weka.core.UnsupportedAttributeTypeException: weka.filters.supervised.attribute.Discretize: Cannot handle numeric class!
at weka.core.Capabilities.test(Capabilities.java:954)
at weka.core.Capabilities.test(Capabilities.java:1110)
at weka.core.Capabilities.test(Capabilities.java:1023)
at weka.core.Capabilities.testWithFail(Capabilities.java:1302)
at weka.filters.Filter.testInputFormat(Filter.java:434)
at weka.filters.Filter.setInputFormat(Filter.java:452)
at weka.filters.supervised.attribute.Discretize.setInputFormat(Discretize.java:286)
at weka.classifiers.meta.FilteredClassifier.buildClassifier(FilteredClassifier.java:389)
at weka.classifiers.Evaluation.evaluateModel(Evaluation.java:1149)
at weka.classifiers.Classifier.runClassifier(Classifier.java:315)
at weka.classifiers.meta.FilteredClassifier.main(FilteredClassifier.java:478)
Error,
On the interface it is automatic, i dont need to handle nothing, how can i do that using the command line?
I did some stupid things, i just needed the multilayerperceptron.
I solved that with:
java -classpath weka.jar weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.5 -N 500 -V 0 -S 0 -E 20 -H a
Just calling the multilayer.