Search code examples
pythonpandasdataframeintersection

Intersection of two pandas dataframes based on column entries


Suppose I have two DataFrames like so:

>>dfA
        S        T            prob
0   ! ! !    ! ! !   8.1623999e-05
1   ! ! !  ! ! ! "   0.00354090007
2   ! ! !  ! ! ! .   0.00210241997
3   ! ! !  ! ! ! ?  6.55684998e-05
4   ! ! !  ! ! !       0.203119993
5   ! ! !  ! ! ! ”  6.62070015e-05
6   ! ! !      ! !   0.00481862016
7   ! ! !        !    0.0274260994
8   ! ! !  " ! ! !  7.99940026e-05
9   ! ! !      " !  1.51188997e-05
10  ! ! !        "  8.50678989e-05

>>dfB
        S        T                              knstats
0   ! ! !  ! ! ! !              knstats=2,391,104,64,25
1   ! ! !  ! ! ! "                 knstats=4,391,6,64,2
2   ! ! !  ! ! ! .                 knstats=4,391,5,64,2
3   ! ! !  ! ! ! ?                 knstats=1,391,4,64,4
4   ! ! !    ! ! !            knstats=220,391,303,64,55
5   ! ! !      ! !            knstats=16,391,957,64,115
6   ! ! !        !           knstats=28,391,5659,64,932
7   ! ! !  " ! ! !                 knstats=2,391,2,64,1
8   ! ! !      " !               knstats=1,391,37,64,13
9   ! ! !        "  knstats=2,391,1.11721e+06,64,180642
10  ! !        . "        knstats=2,391,120527,64,20368

I want to create a new DataFrame which is composed of the rows which have matching "S" and "T" entries in both matrices, along with the prob column from dfA and the knstats column from dfB. The result should look something like the following, and it is important that the order is the same:

       S        T            prob                              knstats
0  ! ! !  ! ! ! !   8.1623999e-05              knstats=2,391,104,64,25
1  ! ! !  ! ! ! "   0.00354090007                 knstats=4,391,6,64,2
2  ! ! !  ! ! ! .   0.00210241997                 knstats=4,391,5,64,2
3  ! ! !  ! ! ! ?  6.55684998e-05                 knstats=1,391,4,64,4
4  ! ! !    ! ! !     0.203119993            knstats=220,391,303,64,55
5  ! ! !      ! !   0.00481862016            knstats=16,391,957,64,115
6  ! ! !        !    0.0274260994           knstats=28,391,5659,64,932
7  ! ! !  " ! ! !  7.99940026e-05                 knstats=2,391,2,64,1
8  ! ! !      " !  1.51188997e-05               knstats=1,391,37,64,13
9  ! ! !        "  8.50678989e-05  knstats=2,391,1.11721e+06,64,180642

Solution

  • You can merge them so:

    s1 = pd.merge(dfA, dfB, how='inner', on=['S', 'T'])
    

    To drop NA rows:

    s1.dropna(inplace=True)