Given a built-in quaternion data type, how can I view a numpy array of quaternions as a numpy array of floats with an extra dimension of size 4 (without copying memory)?
Numpy has built-in support for floats and complex floats. I need to use quaternions -- which generalize complex numbers, but rather than having two components, they have four. There's already a very nice package that uses the C API to incorporate quaternions directly into numpy, which seems to do all the operations perfectly fast. There are a few more quaternion functions that I need to add to it, but I think I can mostly handle those.
However, I would also like to be able to use these quaternions in other functions that I need to write using the awesome numba
package. Unfortunately, numba cannot currently deal with custom types. But I don't need the fancy quaternion functions in those numba-ed functions; I just need the numbers themselves. So I'd like to be able to just re-cast an array of quaternions as an array of floats with one extra dimension (of size 4). In particular, I'd like to just use the data that's already in the array without copying, and view it as a new array. I've found the PyArray_View function, but I don't know how to implement it.
(I'm pretty confident the data are held contiguously in memory, which I assume would be required for having a simple view of them. Specifically, elsize = 8*4
and alignment = 8
in the quaternion package.)
Turns out that was pretty easy. The magic of numpy means it's already possible. While thinking about this, I just tried the following with complex numbers:
import numpy as np
a = np.array([1+2j, 3+4j, 5+6j])
a.view(np.float).reshape(a.shape[0],2)
And this gave exactly what I was looking for. Somehow the same basic idea works with the quaternion type. I guess the internals just rely on that elsize
, divide by sizeof(float)
and use that to set the new size in the last dimension???
To answer my own question then, the same idea can be applied to the quaternion module:
import numpy as np, quaternions
a = np.array([np.quaternion(1,2,3,4), np.quaternion(5,6,7,8), np.quaternion(9,0,1,2)])
a.view(np.float).reshape(a.shape[0],4)
The view transformation and reshaping combined seem to take about 1 microsecond on my laptop, independent of the size of the input array (presumably because there's no memory copying, other than a few members in some basic python object).
The above is valid for simple 1-d arrays of quaternions. To apply it to general shapes, I just write a function inside the quaternion namespace:
def as_float_array(a):
"View the quaternion array as an array of floats with one extra dimension of size 4"
return a.view(np.float).reshape(a.shape+(4,))
Different shapes don't seem to slow the function down significantly.
Also, it's easy to convert back to from a float array to a quaternion array:
def as_quat_array(a):
"View a float array as an array of floats with one extra dimension of size 4"
if(a.shape[-1]==4) :
return a.view(np.quaternion).reshape(a.shape[:-1])
return a.view(np.quaternion).reshape(a.shape[:-1]+(a.shape[-1]//4,))