UPDATE 3 (Thanks so much for your help)
I removed what was suggested. Also u_IT_MVMatrix seems wrong (what ever it is for) Things look a bit better but the floor should glow and the textured bricks should have light from the colour bricks (blue, red etc)
Vertex (fragment stayed the same) for textured Objects
uniform mat4 u_MVPMatrix; // A constant representing the combined model/view/projection matrix.
uniform mat4 u_MVMatrix; // A constant representing the combined model/view matrix.
attribute vec4 a_Position; // Per-vertex position information we will pass in.
attribute vec3 a_Normal; // Per-vertex normal information we will pass in.
attribute vec2 a_TexCoordinate; // Per-vertex texture coordinate information we will pass in.
varying vec3 v_Position; // This will be passed into the fragment shader.
varying vec3 v_Normal; // This will be passed into the fragment shader.
varying vec2 v_TexCoordinate; // This will be passed into the fragment shader.
uniform vec4 u_PointLightPositions[3]; // In eye space
uniform vec3 u_PointLightColors[3];
vec4 eyeSpacePosition;
vec3 eyeSpaceNormal;
uniform vec4 v_Color;
varying vec3 lighting;
vec3 materialColor;
vec3 getAmbientLighting();
vec3 getDirectionalLighting();
vec3 getPointLighting();
// The entry point for our vertex shader.
void main()
{
//materialColor = vec3(v_Color.xyz); // Will be modified by the texture later.
materialColor = vec3(1.0, 1.0, 1.0);
// Transform the vertex into eye space.
v_Position = vec3(u_MVMatrix * a_Position);
// Pass through the texture coordinate.
v_TexCoordinate = a_TexCoordinate;
// Transform the normal's orientation into eye space.
v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0));
// gl_Position is a special variable used to store the final position.
// Multiply the vertex by the matrix to get the final point in normalized screen coordinates.
eyeSpacePosition = u_MVMatrix * a_Position;
// The model normals need to be adjusted as per the transpose of the inverse of the modelview matrix.
eyeSpaceNormal = normalize(vec3(u_MVMatrix * vec4(a_Normal, 0.0)));
gl_Position = u_MVPMatrix * a_Position;
lighting = getAmbientLighting();
lighting += getPointLighting();
}
vec3 getAmbientLighting()
{
return materialColor * 0.2;
}
vec3 getPointLighting()
{
vec3 lightingSum = vec3(0.0);
for (int i = 0; i < 3; i++) {
vec3 toPointLight = vec3(u_PointLightPositions[i]) - vec3(eyeSpacePosition);
float distance = length(toPointLight);
//distance = distance / 5.0;
toPointLight = normalize(toPointLight);
float cosine = max(dot(eyeSpaceNormal, toPointLight), 0.0);
lightingSum += (materialColor * u_PointLightColors[i] * 20.0 * cosine)
/ distance;
}
return lightingSum;
}
**Vertex for light bricks (no texture)**
uniform mat4 u_MVPMatrix; // A constant representing the combined model/view/projection matrix.
uniform mat4 u_MVMatrix; // A constant representing the combined model/view matrix.
attribute vec4 a_Position; // Per-vertex position information we will pass in.
attribute vec3 a_Normal; // Per-vertex normal information we will pass in.
varying vec3 v_Position; // This will be passed into the fragment shader.
varying vec3 v_Normal; // This will be passed into the fragment shader.
uniform vec4 u_PointLightPositions[3]; // In eye space
uniform vec3 u_PointLightColors[3];
vec4 eyeSpacePosition;
vec3 eyeSpaceNormal;
uniform vec4 v_Color;
varying vec3 lighting;
vec3 getAmbientLighting();
vec3 getDirectionalLighting();
vec3 getPointLighting();
// The entry point for our vertex shader.
void main()
{
// Transform the vertex into eye space.
v_Position = vec3(u_MVMatrix * a_Position);
// Transform the normal's orientation into eye space.
v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0));
// gl_Position is a special variable used to store the final position.
// Multiply the vertex by the matrix to get the final point in normalized screen coordinates.
gl_Position = u_MVPMatrix * a_Position;
eyeSpacePosition = u_MVMatrix * a_Position;
// The model normals need to be adjusted as per the transpose of the inverse of the modelview matrix.
eyeSpaceNormal = normalize(vec3(u_MVMatrix * vec4(a_Normal, 0.0)));
lighting = getAmbientLighting();
lighting += getPointLighting();
}
vec3 getAmbientLighting()
{
return v_Color.xyz * 0.2;
}
vec3 getPointLighting()
{
vec3 lightingSum = vec3(0.0);
for (int i = 0; i < 3; i++) {
vec3 toPointLight = vec3(u_PointLightPositions[i]) - vec3(eyeSpacePosition);
float distance = length(toPointLight);
toPointLight = normalize(toPointLight);
float cosine = max(dot(eyeSpaceNormal, toPointLight), 0.0);
lightingSum += (v_Color.xyz * u_PointLightColors[i] * 20.0 * cosine)
/ distance;
}
return lightingSum;
}
I always struggled with using multiple light sources in a shader but I found an example in my Android OpenGL 2.0 quick start book.
Thought I would give it ago, sadly whatever I do, I seem to be the light, so when I get closer to a object it gets lighter, what I want to a make 3 different places (say street lamps) as light sources.
I define my light places and colour in my render
// new lighting
public final float[] pointLightPositions = new float[]
{0f, 1f, 0f, 1f,
100f, 1f, 0f, 1f,
50f, 1f, 0f, 1f};
public final float[] pointLightColors = new float[]
{1.00f, 0.20f, 0.20f,
0.02f, 0.25f, 0.02f,
0.02f, 0.20f, 1.00f};
On rendering
uPointLightPositionsLocation =
glGetUniformLocation(mProgramHandle, "u_PointLightPositions");
uPointLightColorsLocation =
glGetUniformLocation(mProgramHandle, "u_PointLightColors");
glUniform4fv(uPointLightPositionsLocation, 3, mRenderer.pointLightPositions, 0);
glUniform3fv(uPointLightColorsLocation, 3, mRenderer.pointLightColors, 0);
// not sure why I need this
// lighting
final float[] pointPositionsInEyeSpace = new float[12];
multiplyMV(pointPositionsInEyeSpace, 0, mVMatrix, 0, mRenderer.pointLightPositions, 0);
multiplyMV(pointPositionsInEyeSpace, 4, mVMatrix, 0, mRenderer.pointLightPositions, 4);
multiplyMV(pointPositionsInEyeSpace, 8, mVMatrix, 0, mRenderer.pointLightPositions, 8);
Matrix.multiplyMM(mRenderer.mMVPMatrix, 0, mVMatrix, 0, mRenderer.mModelMatrix, 0);
Shaders (vertex)
uniform mat4 u_MVPMatrix; // A constant representing the combined model/view/projection matrix.
uniform mat4 u_MVMatrix; // A constant representing the combined model/view matrix.
attribute vec4 a_Position; // Per-vertex position information we will pass in.
attribute vec3 a_Normal; // Per-vertex normal information we will pass in.
attribute vec2 a_TexCoordinate; // Per-vertex texture coordinate information we will pass in.
varying vec3 v_Position; // This will be passed into the fragment shader.
varying vec3 v_Normal; // This will be passed into the fragment shader.
varying vec2 v_TexCoordinate; // This will be passed into the fragment shader.
uniform vec4 u_PointLightPositions[3]; // In eye space
uniform vec3 u_PointLightColors[3];
// The entry point for our vertex shader.
void main()
{
// Transform the vertex into eye space.
v_Position = vec3(u_MVMatrix * a_Position);
// Pass through the texture coordinate.
v_TexCoordinate = a_TexCoordinate;
// Transform the normal's orientation into eye space.
v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0));
// gl_Position is a special variable used to store the final position.
// Multiply the vertex by the matrix to get the final point in normalized screen coordinates.
gl_Position = u_MVPMatrix * a_Position;
}
Fragment
precision mediump float; // Set the default precision to medium. We don't need as high of a
// precision in the fragment shader.
uniform vec3 u_LightPos; // The position of the light in eye space.
uniform sampler2D u_Texture; // The input texture.
varying vec3 v_Position; // Interpolated position for this fragment.
varying vec3 v_Normal; // Interpolated normal for this fragment.
varying vec2 v_TexCoordinate; // Interpolated texture coordinate per fragment.
uniform vec4 v_Color;
uniform vec4 u_PointLightPositions[3]; // In eye space
uniform vec3 u_PointLightColors[3];
vec3 getPointLighting();
// The entry point for our fragment shader.
void main()
{
// Will be used for attenuation.
float distance = length(u_LightPos - v_Position);
// Get a lighting direction vector from the light to the vertex.
vec3 lightVector = normalize(u_LightPos - v_Position);
// Calculate the dot product of the light vector and vertex normal. If the normal and light vector are
// pointing in the same direction then it will get max illumination.
float diffuse = max(dot(v_Normal, lightVector), 0.0);
// Add attenuation.
diffuse = diffuse * (1.0 / (1.0 + (0.25 * distance)));
// Add ambient lighting
diffuse = diffuse + 0.7;
// Multiply the color by the diffuse illumination level and texture value to get final output color.
//gl_FragColor = (diffuse * texture2D(u_Texture, v_TexCoordinate));
gl_FragColor = diffuse * texture2D(u_Texture, v_TexCoordinate) ;
gl_FragColor *= (v_Color * vec4(getPointLighting(),v_Color.w));
}
vec3 getPointLighting()
{
vec3 lightingSum = vec3(0.0);
for (int i = 0; i < 3; i++) {
vec3 toPointLight = vec3(u_PointLightPositions[i])
- vec3(v_Position);
float distance = length(toPointLight);
toPointLight = normalize(toPointLight);
float cosine = max(dot(v_Normal, toPointLight), 0.0);
//lightingSum += vec3(0.0, 0.0, 1.0);
lightingSum += (vec3(v_Color.xyz) * u_PointLightColors[i] * 5.0 * cosine) / distance;
}
return lightingSum;
}
I would be extremely happy if someone could help :)
UPDATE 2
I have lighting, different colour but they only glow when I get really near? I am sure its something to do with u_IT_MVMatrix matrix
Fragment
uniform vec3 u_LightPos; // The position of the light in eye space.
uniform sampler2D u_Texture; // The input texture.
varying vec3 v_Position; // Interpolated position for this fragment.
varying vec3 v_Normal; // Interpolated normal for this fragment.
varying vec2 v_TexCoordinate; // Interpolated texture coordinate per fragment.
uniform vec4 v_Color;
varying vec3 lighting;
// The entry point for our fragment shader.
void main()
{
gl_FragColor = texture2D(u_Texture, v_TexCoordinate) ;
gl_FragColor *= vec4(lighting,1.0);
}
Vertex
uniform mat4 u_MVPMatrix; // A constant representing the combined model/view/projection matrix.
uniform mat4 u_MVMatrix; // A constant representing the combined model/view matrix.
attribute vec4 a_Position; // Per-vertex position information we will pass in.
attribute vec3 a_Normal; // Per-vertex normal information we will pass in.
attribute vec2 a_TexCoordinate; // Per-vertex texture coordinate information we will pass in.
varying vec3 v_Position; // This will be passed into the fragment shader.
varying vec3 v_Normal; // This will be passed into the fragment shader.
varying vec2 v_TexCoordinate; // This will be passed into the fragment shader.
uniform vec4 u_PointLightPositions[3]; // In eye space
uniform vec3 u_PointLightColors[3];
uniform vec3 u_VectorToLight; // In eye space
uniform mat4 u_IT_MVMatrix;
vec4 eyeSpacePosition;
vec3 eyeSpaceNormal;
uniform vec4 v_Color;
varying vec3 lighting;
vec3 materialColor;
vec3 getAmbientLighting();
vec3 getDirectionalLighting();
vec3 getPointLighting();
// The entry point for our vertex shader.
void main()
{
materialColor = vec3(1.0, 1.0, 1.0); // Will be modified by the texture later.
// Transform the vertex into eye space.
v_Position = vec3(u_MVMatrix * a_Position);
// Pass through the texture coordinate.
v_TexCoordinate = a_TexCoordinate;
// Transform the normal's orientation into eye space.
v_Normal = vec3(u_MVMatrix * vec4(a_Normal, 0.0));
// gl_Position is a special variable used to store the final position.
// Multiply the vertex by the matrix to get the final point in normalized screen coordinates.
eyeSpacePosition = u_MVMatrix * a_Position;
// The model normals need to be adjusted as per the transpose
// of the inverse of the modelview matrix.
eyeSpaceNormal = normalize(vec3(u_IT_MVMatrix * vec4(a_Normal, 0.0)));
gl_Position = u_MVPMatrix * a_Position;
lighting = getAmbientLighting();
lighting += getDirectionalLighting();
lighting += getPointLighting();
}
vec3 getAmbientLighting()
{
return materialColor * 0.2;
}
vec3 getDirectionalLighting()
{
return materialColor * max(dot(eyeSpaceNormal, u_VectorToLight), 0.0);
}
vec3 getPointLighting()
{
vec3 lightingSum = vec3(0.0);
for (int i = 0; i < 3; i++) {
vec3 toPointLight = vec3(u_PointLightPositions[i]) - vec3(eyeSpacePosition);
float distance = length(toPointLight);
toPointLight = normalize(toPointLight);
float cosine = max(dot(eyeSpaceNormal, toPointLight), 0.0);
lightingSum += (materialColor * u_PointLightColors[i] * 5.0 * cosine)
/ distance;
}
return lightingSum;
}
So I believe its something to do with my position
//multiplyMM(mModelMatrix, 0, VMatrix, 0, mModelMatrix, 0);
//invertM(tempMatrix, 0, mModelMatrix, 0);
transposeM(it_modelViewMatrix, 0, VMatrix, 0);
In your code you do have four lights, the fourth being positioned at u_LightPos.
I'd suggest you remove the diffuse variable (the fourth light) altogether and also all references to the v_Color (since you also have a texture). Then you should start seeing only the lighting of your three street lamps.
ps. I'd also move the light calculations to the vertex shader for the sake of performance.