Search code examples
pythonpandasdataframeseries

Convert pandas Series to DataFrame


I have a Pandas series sf:

email
[email protected]    [1.0, 0.0, 0.0]
[email protected]    [2.0, 0.0, 0.0]
[email protected]    [1.0, 0.0, 0.0]
[email protected]    [4.0, 0.0, 0.0]
[email protected]    [1.0, 0.0, 3.0]
[email protected]    [1.0, 5.0, 0.0]

And I would like to transform it to the following DataFrame:

index | email             | list
_____________________________________________
0     | [email protected]  | [1.0, 0.0, 0.0]
1     | [email protected]  | [2.0, 0.0, 0.0]
2     | [email protected]  | [1.0, 0.0, 0.0]
3     | [email protected]  | [4.0, 0.0, 0.0]
4     | [email protected]  | [1.0, 0.0, 3.0]
5     | [email protected]  | [1.0, 5.0, 0.0]

I found a way to do it, but I doubt it's the more efficient one:

df1 = pd.DataFrame(data=sf.index, columns=['email'])
df2 = pd.DataFrame(data=sf.values, columns=['list'])
df = pd.merge(df1, df2, left_index=True, right_index=True)

Solution

  • Rather than create 2 temporary dfs you can just pass these as params within a dict using the DataFrame constructor:

    pd.DataFrame({'email':sf.index, 'list':sf.values})
    

    There are lots of ways to construct a df, see the docs