I'm struggling to keep the same color bar range through different plots.
For example, I have these visualizations:
Which are produced with this code:
def plot_contour(x_dim, y_dim, x_steps, y_steps, scalar_field, file_path):
plt.figure()
x, y = numpy.mgrid[-x_dim:x_dim/:x_steps*1j, -y_dim:y_dim:y_steps*1j]
cs = plt.contourf(x, y, scalar_field, zorder=1, extent=[-x_dim, x_dim, -y_dim, y_dim])
plt.colorbar(cs)
plt.savefig(file_path + '.png', dpi=Vc.dpi)
plt.close()
I want to be able to compare both fields, so, I would like to use the same color mapping for both of them.
My first approach was to use the parameters v_min
and v_max
, using the min/max values of the data.
cs = plt.contourf(x, y, scalar_field, zorder=1, extent=[-x_dim, x_dim, -y_dim, y_dim], vmin=-1.00, vmax=1.05) # Manual setting to test
Then I got the same color mapping:
But I also would like to have the same color bar range displayed in the plot. I tried to use
cb = plt.colorbar(cs)
cb.set_clim(vmin=-1.00, vmax=1.05)
With no success.
This complete example produces the same behavior:
import matplotlib
import numpy as numpy
import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
matplotlib.rcParams['xtick.direction'] = 'out'
matplotlib.rcParams['ytick.direction'] = 'out'
delta = 0.025
x = numpy.arange(-3.0, 3.0, delta)
y = numpy.arange(-2.0, 2.0, delta)
X, Y = numpy.meshgrid(x, y)
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
# difference of Gaussians
Za = 10.0 * (Z2 - Z1)
Zb = 5.0 * (Z2 - Z1)
def bounds(scalar_fields):
"""
Get the bounds of a set of scalar_fields
:param scalar_fields : the scalar field set
:return: a set of normalized vector field components
"""
max_bound = -numpy.inf
min_bound = numpy.inf
for scalar_field in scalar_fields:
max_lim = numpy.max(scalar_field)
min_lim = numpy.min(scalar_field)
if max_lim > max_bound:
max_bound = max_lim
if min_lim < min_bound:
min_bound = min_lim
return min_bound, max_bound
def plot_contour(x_dim, y_dim, x_steps, y_steps, scalar_field, v_min, v_max, file_path):
plt.figure()
x, y = numpy.mgrid[-x_dim/2:x_dim/2:x_steps*1j, -y_dim/2:y_dim/2:y_steps*1j]
cs = plt.contourf(x, y, scalar_field, zorder=1, extent=[-x_dim/2.0, x_dim/2.0, -y_dim/2.0, y_dim/2.0],
vmin=v_min, vmax=v_max)
cb = plt.colorbar(cs)
plt.savefig(file_path + '.png')
plt.close()
v_min, v_max = bounds([Za, Zb])
x_dim = y_dim = 6
y_steps = x.shape[0]
x_steps = y.shape[0]
plot_contour(x_dim, y_dim, x_steps, y_steps, Za, v_min, v_max, 'Za')
plot_contour(x_dim, y_dim, x_steps, y_steps, Zb, v_min, v_max, 'Zb')
How could I do that?
Thank you in advance.
If you want the colors in the colorbars to correspond to the same values within two contour plots, then you need to not only control the colorbar, but also control the levels in the contour plot. That is, to compare the same levels between the plots, the plots should have the same contour levels. This is easy to do. Here's an example of that plot:
There are two ways: 1) calculate the levels ahead of time; 2) use the levels from one plot to set the levels in the other. I'll do the second, since from this it should be clear how to do the first (using, for example, levels = numpy.linspace(v_min, vmax, 10)
, though, to be clear, I'm not using this here, but am letting mpl calculate the levels).
First, here I'm also using:
Za = 10.0 * (Z2 - Z1)
Zb = 6.0 * (Z2 - Z1) # 6, rather than 5
Then, to plot:
def plot_contour(x_dim, y_dim, x_steps, y_steps, scalar_field, file_path, v_min, v_max, levels=None):
x, y = numpy.mgrid[-x_dim/2:x_dim/2:x_steps*1j, -y_dim/2:y_dim/2:y_steps*1j]
cs = plt.contourf(x, y, scalar_field, zorder=1, cmap=cm.jet, extent=[-x_dim/2.0, x_dim/2.0, -y_dim/2.0, y_dim/2.0], vmin=v_min, vmax=v_max, levels=levels)
plt.colorbar(cs)
return cs.levels
v_min, v_max = bounds([Za, Zb])
plt.figure()
plt.subplot(121)
levels = plot_contour(x_dim, y_dim, x_steps, y_steps, Za, 'Za', v_min, v_max)
plt.subplot(122)
plot_contour(x_dim, y_dim, x_steps, y_steps, Zb, 'Zb', v_min, v_max, levels=levels)
plt.show()