At some point in my code I have to make operations on all elements in an unordered_map. In order to accelerate this process I want to use openMP, but the naive approach does not work:
std::unordered_map<size_t, double> hastTable;
#pragma omp for
for(auto it = hastTable.begin();
it != hastTable.end();
it ++){
//do something
}
The reason for this is, that the iterator of an unordered_map is no random access iterator. As an alternative I have tried the __gnu_parallel directives working on for_each. But the following code
#include <parallel/algorithm>
#include <omp.h>
__gnu_parallel::for_each (hashTable.begin(), hashTable.end(),[](std::pair<const size_t, double> & item)
{
//do something with item.secon
});
compiled with (gcc 4.8.2)
g++ -fopenmp -march=native -std=c++11
does not run parallel. Switching the unordered_map with a vector and using the same __gnu_parallel directive runs in parallel.
Why does it not run in parallel in case of the unordered map? Are there workarounds?
In the following I give you some simple code, which reproduces my problem.
#include <unordered_map>
#include <parallel/algorithm>
#include <omp.h>
int main(){
//unordered_map
std::unordered_map<size_t, double> hashTable;
double val = 1.;
for(size_t i = 0; i<100000000; i++){
hashTable.emplace(i, val);
val += 1.;
}
__gnu_parallel::for_each (hashTable.begin(), hashTable.end(),[](std::pair<const size_t, double> & item)
{
item.second *= 2.;
});
//vector
std::vector<double> simpleVector;
val = 1.;
for(size_t i = 0; i<100000000; i++){
simpleVector.push_back(val);
val += 1.;
}
__gnu_parallel::for_each (simpleVector.begin(), simpleVector.end(),[](double & item)
{
item *= 2.;
});
}
I am looking forward to your answers.
You could split a loop over ranges of bucket indices, then create an intra-bucket iterator to handle elements. unordered_map
has .bucket_count()
and the bucket-specific iterator-yielding begin(bucket_number)
, end(bucket_number)
that allow this. Assuming you haven't modified the default max_load_factor()
from 1.0 and have a reasonable hash function, you'll average 1 element per bucket and shouldn't be wasting too much time on empty buckets.