I know that I can say convert a 2-input AND gate into a NOR gate by simply inverting the two inputs because of DeMorgan's Theorem.
But how would you do the equivalent on a 3-input AND gate?
Say...
____
A___| \
B___| )___
C___|____ /
I'm trying to understand this because my homework asks me to take a circuit and convert it using NOR synthesis to only use nor gates, and I know how to do it with 2 input gates, but the gate with 3 inputs is throwing me for a spin.
DeMorgan's theorem for 2-input AND would produce:
AB
(AB)''
(A' + B')'
So, yes, the inputs are inverted and fed into a NOR gate.
DeMorgan's theorem for 3-input AND would similarly produce:
ABC
(ABC)''
(A' + B' + C')'
Which is, again, inputs inverted and fed into a (3-input) NOR gate:
___
A--O\ \
B--O ) )O---
C--O/___ /
@SailorChibi has truth tables that show equivalence.