I have a dataset (dat) that looks like this:
Team Person Performance1 Performance2
1 36465930 1 101
1 37236856 1 101
1 34940210 1 101
1 29135524 1 101
2 10318268 1 541
2 641793 1 541
2 32352593 1 541
2 2139024 1 541
3 35193922 2 790
3 32645504 2 890
3 32304024 2 790
3 22696491 2 790
I am trying to identify and remove all teams that have variance on Performance1 or Performance2. So, for example, team 3 in the example has variance on Performance 2, so I would want to remove that team from the dataset. Here is the code as I've written it:
tda <- aggregate(dat, by=list(data$Team), FUN=sd)
tda1 <- tda[ which(tda$Performance1 != 0 | tda$Performance2 != 0), ]
The problem is that there are over 100,000 teams in my dataset, so my first line of code is taking an extremely long time, and I'm not sure if it will ever finish aggregating the dataset. What would be a more efficient way to solve this problem?
Thanks in advance! :)
Sincerely, Amy
The dplyr
package is generally very fast. Here's a way to select only those teams with standard deviation equal to zero for both Performance1
and Performance2
:
library(dplyr)
datAggregated = dat %>%
group_by(Team) %>%
summarise(sdP1 = sd(Performance1),
sdP2 = sd(Performance2)) %>%
filter(sdP1==0 & sdP2==0)
datAggregated
Team sdP1 sdP2
1 1 0 0
2 2 0 0