While playing about with optimisation settings, I noticed an interesting phenomenon: functions taking a variable number of arguments (...
) never seemed to get inlined. (Obviously this behavior is compiler-specific, but I've tested on a couple of different systems.)
For example, compiling the following small programm:
#include <stdarg.h>
#include <stdio.h>
static inline void test(const char *format, ...)
{
va_list ap;
va_start(ap, format);
vprintf(format, ap);
va_end(ap);
}
int main()
{
test("Hello %s\n", "world");
return 0;
}
will seemingly always result in a (possibly mangled) test
symbol appearing in the resulting executable (tested with Clang and GCC in both C and C++ modes on MacOS and Linux). If one modifies the signature of test()
to take a plain string which is passed to printf()
, the function is inlined from -O1
upwards by both compilers as you'd expect.
I suspect this is to do with the voodoo magic used to implement varargs, but how exactly this is usually done is a mystery to me. Can anybody enlighten me as to how compilers typically implement vararg functions, and why this seemingly prevents inlining?
At least on x86-64, the passing of var_args is quite complex (due to passing arguments in registers). Other architectures may not be quite so complex, but it is rarely trivial. In particular, having a stack-frame or frame pointer to refer to when getting each argument may be required. These sort of rules may well stop the compiler from inlining the function.
The code for x86-64 includes pushing all the integer arguments, and 8 sse registers onto the stack.
This is the function from the original code compiled with Clang:
test: # @test
subq $200, %rsp
testb %al, %al
je .LBB1_2
# BB#1: # %entry
movaps %xmm0, 48(%rsp)
movaps %xmm1, 64(%rsp)
movaps %xmm2, 80(%rsp)
movaps %xmm3, 96(%rsp)
movaps %xmm4, 112(%rsp)
movaps %xmm5, 128(%rsp)
movaps %xmm6, 144(%rsp)
movaps %xmm7, 160(%rsp)
.LBB1_2: # %entry
movq %r9, 40(%rsp)
movq %r8, 32(%rsp)
movq %rcx, 24(%rsp)
movq %rdx, 16(%rsp)
movq %rsi, 8(%rsp)
leaq (%rsp), %rax
movq %rax, 192(%rsp)
leaq 208(%rsp), %rax
movq %rax, 184(%rsp)
movl $48, 180(%rsp)
movl $8, 176(%rsp)
movq stdout(%rip), %rdi
leaq 176(%rsp), %rdx
movl $.L.str, %esi
callq vfprintf
addq $200, %rsp
retq
and from gcc:
test.constprop.0:
.cfi_startproc
subq $216, %rsp
.cfi_def_cfa_offset 224
testb %al, %al
movq %rsi, 40(%rsp)
movq %rdx, 48(%rsp)
movq %rcx, 56(%rsp)
movq %r8, 64(%rsp)
movq %r9, 72(%rsp)
je .L2
movaps %xmm0, 80(%rsp)
movaps %xmm1, 96(%rsp)
movaps %xmm2, 112(%rsp)
movaps %xmm3, 128(%rsp)
movaps %xmm4, 144(%rsp)
movaps %xmm5, 160(%rsp)
movaps %xmm6, 176(%rsp)
movaps %xmm7, 192(%rsp)
.L2:
leaq 224(%rsp), %rax
leaq 8(%rsp), %rdx
movl $.LC0, %esi
movq stdout(%rip), %rdi
movq %rax, 16(%rsp)
leaq 32(%rsp), %rax
movl $8, 8(%rsp)
movl $48, 12(%rsp)
movq %rax, 24(%rsp)
call vfprintf
addq $216, %rsp
.cfi_def_cfa_offset 8
ret
.cfi_endproc
In clang for x86, it is much simpler:
test: # @test
subl $28, %esp
leal 36(%esp), %eax
movl %eax, 24(%esp)
movl stdout, %ecx
movl %eax, 8(%esp)
movl %ecx, (%esp)
movl $.L.str, 4(%esp)
calll vfprintf
addl $28, %esp
retl
There's nothing really stopping any of the above code from being inlined as such, so it would appear that it is simply a policy decision on the compiler writer. Of course, for a call to something like printf
, it's pretty meaningless to optimise away a call/return pair for the cost of the code expansion - after all, printf is NOT a small short function.
(A decent part of my work for most of the past year has been to implement printf in an OpenCL environment, so I know far more than most people will ever even look up about format specifiers and various other tricky parts of printf)
Edit: The OpenCL compiler we use WILL inline calls to var_args functions, so it is possible to implement such a thing. It won't do it for calls to printf, because it bloats the code very much, but by default, our compiler inlines EVERYTHING, all the time, no matter what it is... And it does work, but we found that having 2-3 copies of printf in the code makes it REALLY huge (with all sorts of other drawbacks, including final code generation taking a lot longer due to some bad choices of algorithms in the compiler backend), so we had to add code to STOP the compiler doing that...