In C, when ±0.0
is supported, -0.0
or +0.0
assigned to a double
typically makes no arithmetic difference. Although they have different bit patterns, they arithmetically compare as equal.
double zp = +0.0;
double zn = -0.0;
printf("0 == memcmp %d\n", 0 == memcmp(&zn, &zp, sizeof zp));// --> 0 == memcmp 0
printf("== %d\n", zn == zp); // --> == 1
Inspire by a @Pascal Cuoq comment, I am looking for a few more functions in standard C that provide arithmetically different results.
Note: Many functions, like sin()
, return +0.0
from f(+0.0)
and -0.0
from f(-0.0)
. But these do not provide different arithmetic results. Also the 2 results should not both be NaN
.
There are a few standard operations and functions that form numerically different answers between f(+0.0)
and f(-0.0)
.
Different rounding modes or other floating point implementations may give different results.
#include <math.h>
#include <stdio.h>
double inverse(double x) { return 1/x; }
double atan2m1(double y) { return atan2(y, -1.0); }
double sprintf_d(double x) {
char buf[20];
// sprintf(buf, "%+f", x); Changed to e
sprintf(buf, "%+e", x);
return buf[0]; // returns `+` or `-`
}
double copysign_1(double x) { return copysign(1.0, x); }
double signbit_d(double x) {
int sign = signbit(x); // my compile returns 0 or INT_MIN
return sign;
}
double pow_m1(double x) { return pow(x, -1.0); }
void zero_test(const char *name, double (*f)(double)) {
double fzp = (f)(+0.0);
double fzn = (f)(-0.0);
int differ = fzp != fzn;
if (fzp != fzp && fzn != fzn) differ = 0; // if both NAN
printf("%-15s f(+0):%-+15e %s f(-0):%-+15e\n",
name, fzp, differ ? "!=" : "==", fzn);
}
void zero_tests(void) {
zero_test("1/x", inverse);
zero_test("atan2(x,-1)", atan2m1);
zero_test("printf(\"%+e\")", sprintf_d);
zero_test("copysign(x,1)", copysign_1);
zero_test("signbit()", signbit_d);
zero_test("pow(x,-odd)", pow_m1);; // @Pascal Cuoq
zero_test("tgamma(x)", tgamma); // @vinc17 @Pascal Cuoq
#if __STDC_VERSION__ >= 202310 // C23
zero_test("rsqrt(x)", rsqrt);
#endif
}
int main(void) {
zero_tests();
}
Output:
1/x f(+0):+inf != f(-0):-inf
atan2(x,-1) f(+0):+3.141593e+00 != f(-0):-3.141593e+00
printf("%+e") f(+0):+4.300000e+01 != f(-0):+4.500000e+01
copysign(x,1) f(+0):+1.000000e+00 != f(-0):-1.000000e+00
signbit() f(+0):+0.000000e+00 != f(-0):+1.000000e+00
pow(x,-odd) f(+0):+inf != f(-0):-inf
tgamma(x) f(+0):+inf != f(-0):-inf
Notes:
rsqrt(x)
, AKA 1/sqrt(x)
added to C23. (Untested).
double zero = +0.0; memcpy(&zero, &x, sizeof x)
can show x
is a different bit pattern than +0.0
but x
could still be a +0.0
. I think some FP formats have many bit patterns that are +0.0
and -0.0
. TBD.
This is a self-answer as provided by https://stackoverflow.com/help/self-answer.