Search code examples
javamultithreadingconcurrency

Why is i++ not atomic?


Why is i++ not atomic in Java?

To get a bit deeper in Java I tried to count how often the loop in threads are executed.

So I used a

private static int total = 0;

in the main class.

I have two threads.

  • Thread 1: Prints System.out.println("Hello from Thread 1!");
  • Thread 2: Prints System.out.println("Hello from Thread 2!");

And I count the lines printed by thread 1 and thread 2. But the lines of thread 1 + lines of thread 2 don't match the total number of lines printed out.

Here is my code:

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.logging.Level;
import java.util.logging.Logger;

public class Test {

    private static int total = 0;
    private static int countT1 = 0;
    private static int countT2 = 0;
    private boolean run = true;

    public Test() {
        ExecutorService newCachedThreadPool = Executors.newCachedThreadPool();
        newCachedThreadPool.execute(t1);
        newCachedThreadPool.execute(t2);
        try {
            Thread.sleep(1000);
        }
        catch (InterruptedException ex) {
            Logger.getLogger(Test.class.getName()).log(Level.SEVERE, null, ex);
        }
        run = false;
        try {
            Thread.sleep(1000);
        }
        catch (InterruptedException ex) {
            Logger.getLogger(Test.class.getName()).log(Level.SEVERE, null, ex);
        }
        System.out.println((countT1 + countT2 + " == " + total));
    }

    private Runnable t1 = new Runnable() {
        @Override
        public void run() {
            while (run) {
                total++;
                countT1++;
                System.out.println("Hello #" + countT1 + " from Thread 1! Total hello: " + total);
            }
        }
    };

    private Runnable t2 = new Runnable() {
        @Override
        public void run() {
            while (run) {
                total++;
                countT2++;
                System.out.println("Hello #" + countT2 + " from Thread 2! Total hello: " + total);
            }
        }
    };

    public static void main(String[] args) {
        new Test();
    }
}

Solution

  • i++ is probably not atomic in Java because atomicity is a special requirement which is not present in the majority of the uses of i++. That requirement has a significant overhead: there is a large cost in making an increment operation atomic; it involves synchronization at both the software and hardware levels that need not be present in an ordinary increment.

    You could make the argument that i++ should have been designed and documented as specifically performing an atomic increment, so that a non-atomic increment is performed using i = i + 1. However, this would break the "cultural compatibility" between Java, and C and C++. As well, it would take away a convenient notation which programmers familiar with C-like languages take for granted, giving it a special meaning that applies only in limited circumstances.

    Basic C or C++ code like for (i = 0; i < LIMIT; i++) would translate into Java as for (i = 0; i < LIMIT; i = i + 1); because it would be inappropriate to use the atomic i++. What's worse, programmers coming from C or other C-like languages to Java would use i++ anyway, resulting in unnecessary use of atomic instructions.

    Even at the machine instruction set level, an increment type operation is usually not atomic for performance reasons. In x86, a special instruction "lock prefix" must be used to make the inc instruction atomic: for the same reasons as above. If inc were always atomic, it would never be used when a non-atomic inc is required; programmers and compilers would generate code that loads, adds 1 and stores, because it would be way faster.

    In some instruction set architectures, there is no atomic inc or perhaps no inc at all; to do an atomic inc on MIPS, you have to write a software loop which uses the ll and sc: load-linked, and store-conditional. Load-linked reads the word, and store-conditional stores the new value if the word has not changed, or else it fails (which is detected and causes a re-try).