I am using a 32-bit AVR microcontroller (AT32UC3A3256) with High speed USB support. I want to stream data regularly from my PC to the device (without acknowledge of data), so exactly like a USB audio interface, except the data I want to send isn't audio. Such an interface is described here: http://www.edn.com/design/consumer/4376143/Fundamentals-of-USB-Audio.
I am a bit confused about USB isochronous transfers. I understand how a single transfer works, but how and when is the next subsequent transfer planned? I want a continuous stream of data that is calculated a little ahead of time, but streamed with minimum latency and without interruptions (except some occasional data loss). From my understanding, Windows is not a realtime OS so I think the transfers should not be planned with a timer every x milliseconds, but rather using interrupts/events? Or maybe a buffer needs to be filled continuously with as much data as there is available?
I think my question is still about the concepts of USB and not code-related, but if anyone wants to see my code, I am testing and modifying the "USB Vendor Class" example in the ASF framework of Atmel Studio, which contains the firmware source for the AVR and the source for the Windows EXE as well. The Windows example program uses libusb with a supplied driver.
Stephen -
You say "exactly like USB Audio"; but beware! The USB Audio class is very, very complicated because it implements a closed-loop servo system to establish long-term synchronisation between the PC and the audio device. You probably don't need all of that in your application.
To explain a bit more about long-term synchronisation: The audio codec at one end (e.g. the USB headphones) may run at a nominal 48KHz sampling rate, and the audio file at the other end (e.g. the PC) may be designed to offer 48 thousand samples per second, but the PC and the headphones are never going to run at exactly the same speed. Sooner or later there is going to be a buffer overrun or under-run. So the USB audio class implements a control pipe as well as the audio pipe(s). The control pipe is used to negotiate a slight speed-up or slow-down at one end, usually the Device end (e.g. headphones), to avoid data loss. That's why the USB descriptors for audio device class products are so incredibly complex.
If your application can tolerate a slight error in the speed at which data is delivered to the AVR from the PC, you can dispense with the closed-loop servo. That makes things much, much simpler.
You are absolutely right in assuming the need for long-term buffering when streaming data using isochronous pipes. A single isochronous transfer is pointless - you may as well use a bulk pipe for that. The whole reason for isochronous pipes is to handle data streaming. So a lot of look-ahead buffering has to be set up, just as you say.
I use LibUsbK for my iso transfers in product-specific applications which do not fit any preconceived USB classes. There is reasonably good documentation at libusbk for iso transfers. In short - you decide how many bytes per packet and how many packets per transfer. You decide how many buffers to pre-fill (I use five), and offer the libusbk driver the whole lot to start things going. Then you get callbacks as each of those buffers gets emptied by the driver, so you can fill them with new data. It works well for me, even though I have awkward sampling rates to deal with. In my case I set up a bunch of twenty-one packets where twenty of them carry 40 bytes and the twenty-first carries 44 bytes!
Hope that helps - Tony