This is a syntax question and probably has a simple solution but I can't find it covered anywhere on SO for the optimx package.
I have a function like:
ToOptimise = function(a,b,d,e){
(a-1)^2 + (b-2)^2 + (d-3)^2 +(e-4)^2
}
I can optimise select parameters in mle2 quite easily:
library(bbmle)
Calib2 = mle2(ToOptimise,
start = list(a = 1, d = 10),
fixed = list(b = 2, e = 2))
This is not really the right tool though as it is not a maximum likelihood problem.
I want to find a way to pass fixed and optimisable parameters to Optimx as easily
I plan to do several calibrations holding different parameters fixed at any time and so do not want to have to redo the function hardcoding in some parameters.
library(optimx)
ToOptimiseVector = function(Theta){
a = Theta[1]
b = Theta[2]
d = Theta[3]
e = Theta[4]
(a-1)^2 + (b-2)^2 + (d-3)^2 +(e-4)^2
}
Calib1 = optimx( par = c(1,2,1,2),
fn = ToOptimiseVector,
Theta[2] = 2, Theta[4] = 2)
Another optimx syntax question that does not look at fixed and optimisable parameters is:
Added a opt
parameter to the fn
. Just pass this opt
vector into optimx()
. Any non NA values will become fixed.
ToOptimiseVector <- function(Theta, opt = rep(NA, 4)){
# Check if any of opt is not NA
if (any(!sapply(opt, is.na))) {
i = !sapply(opt, is.na)
# Fix non-NA values
Theta[i] <- opt[i]
}
a <- Theta[1]
b <- Theta[2]
d <- Theta[3]
e <- Theta[4]
return((a-1)^2 + (b-2)^2 + (d-3)^2 +(e-4)^2)
}
Seems to work.
Calib1 = optimx( par = c(1,2,1,2), fn = ToOptimiseVector, opt = c(NA, 2, NA, 2))
Calib2 = optimx( par = c(1,2,1,2), fn = ToOptimiseVector)
> Calib1
p1 p2 p3 p4 value fevals gevals niter convcode kkt1 kkt2 xtimes
Nelder-Mead 0.9998974 5.517528 3.00022 10.83214 4 103 NA NA 0 TRUE FALSE 0.02
BFGS 1.0000000 4.000000 3.00000 8.00000 4 6 3 NA 0 TRUE FALSE 0.00
> Calib2
p1 p2 p3 p4 value fevals gevals niter convcode kkt1 kkt2 xtimes
Nelder-Mead 1.000936 1.999793 3.0006 4.000256 1.344336e-06 227 NA NA 0 FALSE TRUE 0.01
BFGS 1.000000 2.000000 3.0000 4.000000 3.566556e-23 16 3 NA 0 TRUE TRUE 0.00