I would be interested to learn about large scale development in Python and especially in how do you maintain a large code base?
When you make incompatibility changes to the signature of a method, how do you find all the places where that method is being called. In C++/Java the compiler will find it for you, how do you do it in Python?
When you make changes deep inside the code, how do you find out what operations an instance provides, since you don't have a static type to lookup?
How do you handle/prevent typing errors (typos)?
Are UnitTest's used as a substitute for static type checking?
As you can guess I almost only worked with statically typed languages (C++/Java), but I would like to try my hands on Python for larger programs. But I had a very bad experience, a long time ago, with the clipper (dBase) language, which was also dynamically typed.
Since nobody pointed out pychecker, pylint and similar tools, I will: pychecker and pylint are tools that can help you find incorrect assumptions (about function signatures, object attributes, etc.) They won't find everything that a compiler might find in a statically typed language -- but they can find problems that such compilers for such languages can't find, too.
Python (and any dynamically typed language) is fundamentally different in terms of the errors you're likely to cause and how you would detect and fix them. It has definite downsides as well as upsides, but many (including me) would argue that in Python's case, the ease of writing code (and the ease of making it structurally sound) and of modifying code without breaking API compatibility (adding new optional arguments, providing different objects that have the same set of methods and attributes) make it suitable just fine for large codebases.