Search code examples
pythonstatisticstime-seriesstatsmodels

Newey-West standard errors for OLS in Python?


I want to have a coefficient and Newey-West standard error associated with it.

I am looking for Python library (ideally, but any working solutions is fine) that can do what the following R code is doing:

library(sandwich)
library(lmtest)

a <- matrix(c(1,3,5,7,4,5,6,4,7,8,9))
b <- matrix(c(3,5,6,2,4,6,7,8,7,8,9))

temp.lm = lm(a ~ b)

temp.summ <- summary(temp.lm)
temp.summ$coefficients <- unclass(coeftest(temp.lm, vcov. = NeweyWest))

print (temp.summ$coefficients)

Result:

             Estimate Std. Error   t value  Pr(>|t|)
(Intercept) 2.0576208  2.5230532 0.8155281 0.4358205
b           0.5594796  0.4071834 1.3740235 0.2026817

I get the coefficients and associated with them standard errors.

I see statsmodels.stats.sandwich_covariance.cov_hac module, but I don't see how to make it work with OLS.


Solution

  • Edited (10/31/2015) to reflect preferred coding style for statsmodels as fall 2015.

    In statsmodels version 0.6.1 you can do the following:

    import pandas as pd
    import numpy as np
    import statsmodels.formula.api as smf
    
    df = pd.DataFrame({'a':[1,3,5,7,4,5,6,4,7,8,9],
                       'b':[3,5,6,2,4,6,7,8,7,8,9]})
    
    reg = smf.ols('a ~ 1 + b',data=df).fit(cov_type='HAC',cov_kwds={'maxlags':1})
    print(reg.summary())
    
                                    OLS Regression Results
    ==============================================================================
    Dep. Variable:                      a   R-squared:                       0.281
    Model:                            OLS   Adj. R-squared:                  0.201
    Method:                 Least Squares   F-statistic:                     1.949
    Date:                Sat, 31 Oct 2015   Prob (F-statistic):              0.196
    Time:                        03:15:46   Log-Likelihood:                -22.603
    No. Observations:                  11   AIC:                             49.21
    Df Residuals:                       9   BIC:                             50.00
    Df Model:                           1
    Covariance Type:                  HAC
    ==============================================================================
                     coef    std err          z      P>|z|      [95.0% Conf. Int.]
    ------------------------------------------------------------------------------
    Intercept      2.0576      2.661      0.773      0.439        -3.157     7.272
    b              0.5595      0.401      1.396      0.163        -0.226     1.345
    ==============================================================================
    Omnibus:                        0.361   Durbin-Watson:                   1.468
    Prob(Omnibus):                  0.835   Jarque-Bera (JB):                0.331
    Skew:                           0.321   Prob(JB):                        0.847
    Kurtosis:                       2.442   Cond. No.                         19.1
    ==============================================================================
    
    Warnings:
    [1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 1 lags and without small sample correction
    

    Or you can use the get_robustcov_results method after fitting the model:

    reg = smf.ols('a ~ 1 + b',data=df).fit()
    new = reg.get_robustcov_results(cov_type='HAC',maxlags=1)
    print(new.summary())
    
    
                                    OLS Regression Results
    ==============================================================================
    Dep. Variable:                      a   R-squared:                       0.281
    Model:                            OLS   Adj. R-squared:                  0.201
    Method:                 Least Squares   F-statistic:                     1.949
    Date:                Sat, 31 Oct 2015   Prob (F-statistic):              0.196
    Time:                        03:15:46   Log-Likelihood:                -22.603
    No. Observations:                  11   AIC:                             49.21
    Df Residuals:                       9   BIC:                             50.00
    Df Model:                           1
    Covariance Type:                  HAC
    ==============================================================================
                     coef    std err          z      P>|z|      [95.0% Conf. Int.]
    ------------------------------------------------------------------------------
    Intercept      2.0576      2.661      0.773      0.439        -3.157     7.272
    b              0.5595      0.401      1.396      0.163        -0.226     1.345
    ==============================================================================
    Omnibus:                        0.361   Durbin-Watson:                   1.468
    Prob(Omnibus):                  0.835   Jarque-Bera (JB):                0.331
    Skew:                           0.321   Prob(JB):                        0.847
    Kurtosis:                       2.442   Cond. No.                         19.1
    ==============================================================================
    
    Warnings:
    [1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 1 lags and without small sample correction
    

    The defaults for statsmodels are slightly different than the defaults for the equivalent method in R. The R method can be made equivalent to the statsmodels default (what I did above) by changing the vcov, call to the following:

    temp.summ$coefficients <- unclass(coeftest(temp.lm, 
                   vcov. = NeweyWest(temp.lm,lag=1,prewhite=FALSE)))
    print(temp.summ$coefficients)
    
                 Estimate Std. Error   t value  Pr(>|t|)
    (Intercept) 2.0576208  2.6605060 0.7733945 0.4591196
    b           0.5594796  0.4007965 1.3959193 0.1962142
    

    You can also still do Newey-West in pandas (0.17), although I believe the plan is to deprecate OLS in pandas:

    print(pd.stats.ols.OLS(df.a,df.b,nw_lags=1))
    
    -------------------------Summary of Regression Analysis-------------------------
    
    Formula: Y ~ <x> + <intercept>
    
    Number of Observations:         11
    Number of Degrees of Freedom:   2
    
    R-squared:         0.2807
    Adj R-squared:     0.2007
    
    Rmse:              2.0880
    
    F-stat (1, 9):     1.5943, p-value:     0.2384
    
    Degrees of Freedom: model 1, resid 9
    
    -----------------------Summary of Estimated Coefficients------------------------
          Variable       Coef    Std Err     t-stat    p-value    CI 2.5%   CI 97.5%
     --------------------------------------------------------------------------------
                 x     0.5595     0.4431       1.26     0.2384    -0.3090     1.4280
         intercept     2.0576     2.9413       0.70     0.5019    -3.7073     7.8226
    *** The calculations are Newey-West adjusted with lags     1
    
    ---------------------------------End of Summary---------------------------------