This is obviously simple, but as a numpy newbe I'm getting stuck.
I have a CSV file that contains 3 columns, the State, the Office ID, and the Sales for that office.
I want to calculate the percentage of sales per office in a given state (total of all percentages in each state is 100%).
df = pd.DataFrame({'state': ['CA', 'WA', 'CO', 'AZ'] * 3,
'office_id': list(range(1, 7)) * 2,
'sales': [np.random.randint(100000, 999999)
for _ in range(12)]})
df.groupby(['state', 'office_id']).agg({'sales': 'sum'})
This returns:
sales
state office_id
AZ 2 839507
4 373917
6 347225
CA 1 798585
3 890850
5 454423
CO 1 819975
3 202969
5 614011
WA 2 163942
4 369858
6 959285
I can't seem to figure out how to "reach up" to the state
level of the groupby
to total up the sales
for the entire state
to calculate the fraction.
This answer by caner using transform
looks much better than my original answer!
df['sales'] / df.groupby('state')['sales'].transform('sum')
Thanks to this comment by Paul Rougieux for surfacing it.
Paul H's answer is right that you will have to make a second groupby
object, but you can calculate the percentage in a simpler way -- just groupby
the state_office
and divide the sales
column by its sum. Copying the beginning of Paul H's answer:
# From Paul H
import numpy as np
import pandas as pd
np.random.seed(0)
df = pd.DataFrame({'state': ['CA', 'WA', 'CO', 'AZ'] * 3,
'office_id': list(range(1, 7)) * 2,
'sales': [np.random.randint(100000, 999999)
for _ in range(12)]})
state_office = df.groupby(['state', 'office_id']).agg({'sales': 'sum'})
# Change: groupby state_office and divide by sum
state_pcts = state_office.groupby(level=0).apply(lambda x:
100 * x / float(x.sum()))
Returns:
sales
state office_id
AZ 2 16.981365
4 19.250033
6 63.768601
CA 1 19.331879
3 33.858747
5 46.809373
CO 1 36.851857
3 19.874290
5 43.273852
WA 2 34.707233
4 35.511259
6 29.781508