Search code examples
pythonnltkstanford-nlp

How to improve speed with Stanford NLP Tagger and NLTK


Is there any way to use the Standford Tagger in a more performant fashion?

Each call to NLTK's wrapper starts a new java instance per analyzed string which is very very slow especially when a larger foreign language model is used...

http://www.nltk.org/api/nltk.tag.html#module-nltk.tag.stanford


Solution

  • Found the solution. It is possible to run the POS Tagger in servlet mode and then connect to it via HTTP. Perfect.

    http://nlp.stanford.edu/software/pos-tagger-faq.shtml#d

    example

    start server in background

    nohup java -mx1000m -cp /var/stanford-postagger-full-2014-01-04/stanford-postagger.jar edu.stanford.nlp.tagger.maxent.MaxentTaggerServer -model /var/stanford-postagger-full-2014-01-04/models/german-dewac.tagger -port 2020 >& /dev/null &
    

    adjust firewall to limit access to port 2020 from localhost only

    iptables -A INPUT -p tcp -s localhost --dport 2020 -j ACCEPT
    iptables -A INPUT -p tcp --dport 2020 -j DROP
    

    test it with wget

    wget http://localhost:2020/?die welt ist schön
    

    shutdown server

    pkill -f stanford
    

    restore iptable settings

    iptables -D INPUT -p tcp -s localhost --dport 2020 -j ACCEPT
    iptables -D INPUT -p tcp --dport 2020 -j DROP