Search code examples
c++openglglut

OpenGL/Glut Cant draw on it


I'm trying to simulate Newton's law of universal gravitation. I already created the particles, and I added the drawing functions. I can't find why I only see a white window.

#include <GLUT/GLUT.h>
#include <OpenGL/gl.h>
#include <stdlib.h>     /* srand, rand */
#include <time.h>       /* time */
#include <vector>
#include <stdio.h>
#include <iostream>
#include <math.h>
using namespace std;


GLfloat xRotated, yRotated, zRotated;
#define WIDTH 800
#define HEIGHT 1200
#define RAD 2000
// 6.67259(30)*10^-11 N(m/kg)^2

// mi escala sera la proporcion de 1 a 1 millón de toneladas.

#define GE 6.67259
void init(void)
{
    glClearColor(0,1,0,0);
    
}

typedef struct particulas{
    float x,y,z; // se va a comenza
    float factor;
    void Drawparticulas();
    particulas(float px,float py,float pz,float pfactor){
        x=px;
        y=py;
        z=pz;
        factor=pfactor;
    }
};

void particulas::Drawparticulas()
{
    // clear the drawing buffer.
    glPushMatrix();
    //glLoadIdentity();
    glTranslatef(x,y,z);
    //escala al tamaño pedido
    glScalef(factor,factor,factor);
    glBegin(GL_QUADS);        // Draw The Cube Using quads
    glColor3f(0.0f,1.0f,0.0f);    // Color Blue
    glVertex3f( 1.0f, 1.0f,-1.0f);    // Top Right Of The Quad (Top)
    glVertex3f(-1.0f, 1.0f,-1.0f);    // Top Left Of The Quad (Top)
    glVertex3f(-1.0f, 1.0f, 1.0f);    // Bottom Left Of The Quad (Top)
    glVertex3f( 1.0f, 1.0f, 1.0f);    // Bottom Right Of The Quad (Top)
    glColor3f(1.0f,0.5f,0.0f);    // Color Orange
    glVertex3f( 1.0f,-1.0f, 1.0f);    // Top Right Of The Quad (Bottom)
    glVertex3f(-1.0f,-1.0f, 1.0f);    // Top Left Of The Quad (Bottom)
    glVertex3f(-1.0f,-1.0f,-1.0f);    // Bottom Left Of The Quad (Bottom)
    glVertex3f( 1.0f,-1.0f,-1.0f);    // Bottom Right Of The Quad (Bottom)
    glColor3f(1.0f,0.0f,0.0f);    // Color Red
    glVertex3f( 1.0f, 1.0f, 1.0f);    // Top Right Of The Quad (Front)
    glVertex3f(-1.0f, 1.0f, 1.0f);    // Top Left Of The Quad (Front)
    glVertex3f(-1.0f,-1.0f, 1.0f);    // Bottom Left Of The Quad (Front)
    glVertex3f( 1.0f,-1.0f, 1.0f);    // Bottom Right Of The Quad (Front)
    glColor3f(1.0f,1.0f,0.0f);    // Color Yellow
    glVertex3f( 1.0f,-1.0f,-1.0f);    // Top Right Of The Quad (Back)
    glVertex3f(-1.0f,-1.0f,-1.0f);    // Top Left Of The Quad (Back)
    glVertex3f(-1.0f, 1.0f,-1.0f);    // Bottom Left Of The Quad (Back)
    glVertex3f( 1.0f, 1.0f,-1.0f);    // Bottom Right Of The Quad (Back)
    glColor3f(0.0f,0.0f,1.0f);    // Color Blue
    glVertex3f(-1.0f, 1.0f, 1.0f);    // Top Right Of The Quad (Left)
    glVertex3f(-1.0f, 1.0f,-1.0f);    // Top Left Of The Quad (Left)
    glVertex3f(-1.0f,-1.0f,-1.0f);    // Bottom Left Of The Quad (Left)
    glVertex3f(-1.0f,-1.0f, 1.0f);    // Bottom Right Of The Quad (Left)
    glColor3f(1.0f,0.0f,1.0f);    // Color Violet
    glVertex3f( 1.0f, 1.0f,-1.0f);    // Top Right Of The Quad (Right)
    glVertex3f( 1.0f, 1.0f, 1.0f);    // Top Left Of The Quad (Right)
    glVertex3f( 1.0f,-1.0f, 1.0f);    // Bottom Left Of The Quad (Right)
    glVertex3f( 1.0f,-1.0f,-1.0f);    // Bottom Right Of The Quad (Right)
    glEnd();            // End Drawing The Cube
    
    glPopMatrix();
}

vector<particulas*> mundo;


void Muevelos()
{

    //Dibujo las lineas del inicio
    
    glBegin(GL_LINES);
    glVertex3f(-RAD, -RAD, 0.0f);
    glVertex3f(RAD, -RAD, 0.0f);
    
    glVertex3f(RAD, -RAD, 0.0f);
    glVertex3f(RAD, RAD, 0.0f);
    
    glVertex3f(RAD, RAD, 0.0f);
    glVertex3f(-RAD, RAD, 0.0f);
    
    glVertex3f(-RAD, RAD, 0.0f);
    glVertex3f(-RAD, -RAD, 0.0f);
    
    glEnd();
    
    for(int i=0;i<mundo.size();i++){
        mundo[i]->Drawparticulas();
    }

    

}
// Not using this yet

void animation(void)
{
    for(int i=1;i<mundo.size();i++){
        
            float xd = mundo[0]->x-mundo[i]->x;
            float yd = mundo[0]->y-mundo[i]->y;
            float zd = mundo[0]->x-mundo[i]->x;
            float Distance = sqrt(xd*xd + yd*yd + zd*zd);
            
            // Ill apply the newtons law.
            
            //(mi*m2/D)g
            
            float F=(mundo[0]->factor*mundo[0]->factor/Distance)*GE;
        
            //Normalized Vector
            float nx,ny,nz;
            nx=mundo[i]->x/Distance;
            ny=mundo[i]->y/Distance;
            nz=mundo[i]->z/Distance;
        
        
            mundo[i]->x+=F*nx;
            mundo[i]->y+=F*ny;
            mundo[i]->z+=F*nz;
        }

}


void reshape(int x, int y)
{
    if (y == 0 || x == 0) return;  //Nothing is visible then, so return
    //Set a new projection matrix
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    
    //Angle of view:40 degrees
    //Near clipping plane distance: 0.5
    //Far clipping plane distance: 20.0
    gluPerspective(100.0,(GLdouble)x/(GLdouble)y,0,1000);
    glMatrixMode(GL_MODELVIEW);
    gluLookAt(-600,-600 , -600,
              0, 0, 0,
              0, 1, 0
              );
    glViewport(0,0,x,y);  //Use the whole window for rendering
}




int main(int argc, char** argv){
    
    mundo.resize(20);
    mundo[0]=new particulas(0,0,0,2); // centro
    
    for(int i=1;i<mundo.size();i++){
        float x=-RAD/2.0 + rand()%RAD;
        float y=-RAD/2.0 + rand()%RAD;
        float z=-RAD/2.0 + rand()%RAD;
        float r= 1+rand()%3;
       //  printf("%lf %lf %lf %lf\n",x,y,z,r);
        mundo[i]=new particulas(x,y,z,r);
    }
    
    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA);
    glutInitWindowPosition(1920/2-WIDTH/2,1080/2-HEIGHT/2);
    glutInitWindowSize(WIDTH,HEIGHT);
    glutCreateWindow("Giu");
    
    // glutInitWindowPosition(100, 100);
    
    
    glEnable(GL_DEPTH_TEST);
    //init();
    gluLookAt(-600,-600 , -600,
              0, 0, 0,
              0, 1, 0
              );

    glutDisplayFunc(Muevelos);
    glutReshapeFunc(reshape);
    //Set the function for the animation.
    //glutIdleFunc(animation);

    glutMainLoop();
    
    return 0;


}

Solution

    1. The zNear parameter to gluPerspective() must be greater than zero.
    2. You need a glLoadIdentity() after gluLookAt() or else your modelview matrix will turn to gibberish after the second window resize.
    3. You need a glutSwapBuffers() at the end of your display callback so that your back buffer can actually make it to the frontbuffer someday.
    4. Your object/view scaling is (probably) way off.

    A working example:

    #include <GL/glut.h>
    
    #include <vector>
    using namespace std;
    
    #include <glm/glm.hpp>
    #include <glm/gtx/norm.hpp>
    using namespace glm;
    
    
    struct Particle
    {
        dvec3 pos;
        dvec3 vel;
        double mass;
        dvec3 force;
    
        void Integrate( double dt )
        {
            const dvec3 accel = force / mass;
    
            // semi-implicit euler
            vel = vel + accel * dt;
            pos = pos + vel * dt;
        }
    };
    
    void Integrate( vector< Particle >& particles, double dt )
    {
        // zero out force vectors for this tick
        for( size_t i = 0; i < particles.size(); ++i )
        {
            particles[i].force = dvec3( 0 );
        }
    
        // accumulate force vectors for each particle
        for( size_t i = 0; i < particles.size(); ++i )
        {
            for( size_t j = i+1; j < particles.size(); ++j )
            {
                Particle& p1 = particles[i];
                Particle& p2 = particles[j];
    
                // http://en.wikipedia.org/wiki/Newton%27s_law_of_universal_gravitation#Vector_form
                const double BigGee = 1.0;
                const dvec3 diff = ( p2.pos - p1.pos );
                const dvec3 rHat = glm::normalize( diff );
                const double r2 = glm::length2( diff );
                const dvec3 force = BigGee * ( ( p1.mass * p2.mass ) / r2 ) * rHat;
    
                p1.force += force;
                p2.force -= force;
            }
        }
    
        // update positions/velocities
        for( size_t i = 0; i < particles.size(); ++i )
        {
            particles[i].Integrate( dt );
        }
    }
    
    vector< Particle > particles;
    void display()
    {
        // use last frame time to calculate delta-t
        static int last = glutGet( GLUT_ELAPSED_TIME );
        int cur = glutGet( GLUT_ELAPSED_TIME );
        double dt = ( cur - last ) / 1000.0;
        last = cur;
    
        Integrate( particles, dt );
    
    
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    
        glMatrixMode( GL_PROJECTION );
        glLoadIdentity();
        double w = glutGet( GLUT_WINDOW_WIDTH );
        double h = glutGet( GLUT_WINDOW_HEIGHT );
        double ar = w / h;
        glOrtho( -100 * ar, 100 * ar, -100, 100, -1, 1 );
    
        glMatrixMode( GL_MODELVIEW );
        glLoadIdentity();
    
        // draw particles
        glPointSize( 5 );
        glEnableClientState( GL_VERTEX_ARRAY );
        glVertexPointer( 3, GL_DOUBLE, sizeof( Particle ), &particles[0].pos[0] );
        glDrawArrays( GL_POINTS, 0, particles.size() );
        glDisableClientState( GL_VERTEX_ARRAY );
    
        glutSwapBuffers();
    }
    
    void timer( int value )
    {
        glutPostRedisplay();
        glutTimerFunc( 16, timer, 0 );
    }
    
    int main(int argc, char **argv)
    {
        particles.resize( 2 );
    
        // "sun"
        particles[0].pos = dvec3( 0, 0, 0 );
        particles[0].vel = dvec3( 0, 0, 0 );
        particles[0].mass = 100000;
    
        // "planet"
        particles[1].pos = dvec3( 50, 0, 0 );
        particles[1].vel = dvec3( 0, -20, 0 );
        particles[1].mass = 1;
    
        glutInit( &argc, argv );
        glutInitDisplayMode( GLUT_RGBA | GLUT_DEPTH | GLUT_DOUBLE );
        glutInitWindowSize( 600, 600 );
        glutCreateWindow( "GLUT" );
    
        glutDisplayFunc( display );
        glutTimerFunc( 0, timer, 0 );
        glutMainLoop();
        return 0;
    }