I'm performing an experiment in which I need to compare classification performance of several classification algorithms for spam filtering, viz. Naive Bayes, SVM, J48, k-NN, RandomForests, etc. I'm using the WEKA data mining tool. While going through the literature I came to know about various dimension reduction methods which can be broadly classified into two types-
I have also read this tutorial of WEKA by Jose Maria in his blog: http://jmgomezhidalgo.blogspot.com.es/2013/02/text-mining-in-weka-revisited-selecting.html
In this blog he writes, "A typical text classification problem in which dimensionality reduction can be a big mistake is spam filtering". So, now I'm confused whether dimensionality reduction is of any use in case of spam filtering or not?
Further, I have also read in the literature about Document Frequency and TF-IDF as being one of feature reduction techniques. But I'm not sure how does it work and come into play during classification.
I know how to use weka, chain filters and classifiers, etc. The problem I'm facing is since I don't have enough idea about feature selection/reduction (including TF-IDF) I am unable to decide how and what feature selection techniques and classification algorithms I should combine to make my study meaningful. I also have no idea about optimal threshold value that I should use with chi-square, info gain, etc.
In StringToWordVector class, I have an option of IDFTransform, so does it makes sence to set it to TRUE and also use a feature selection technique, say InfoGain?
Please guide me and if possible please provide links to resources where I can learn about dimension reduction in detail and can plan my experiment meaningfully!
Well, Naive Bayes seems to work best for spam filtering, and it doesn't play nicely with dimensionality reduction.
Many dimensionality reduction methods try to identify the features of the highest variance. This of course won't help a lot with spam detection, you want discriminative features.
Plus, there is not only one type of spam, but many. Which is likely why naive Bayes works better than many other methods that assume there is only one type of spam.