I am doing speech analysis. I recorded the sound for 5 seconds. Applied Hamming window, DC offsetting and normalising and using fft took the spectrum. I want to hear how much the sound has changed. So is there a way to convert the fft back to time domain?
clc,clear;
% Record your voice for 5 seconds.
%recObj = audiorecorder;
recObj = audiorecorder(96000, 16, 1);
disp('Start speaking.')
recordblocking(recObj,5);
disp('End of Recording.');
% Play back the recording.
play(recObj);
get(recObj);
myspeech = getaudiodata(recObj);
wavwrite(double(myspeech),96000,'C://Users//naveen//Desktop//unprocessed')
% Store data in double-precision array.
myRecording = getaudiodata(recObj);
% Store data in double-precision array.
myRecording = getaudiodata(recObj);
% Plot the samples.
figure,plot(myRecording),title('Original Sound');
%Offset Elimination
a = myRecording;
a=double(a);
D = a-mean(a);
figure,plot(myRecording),title('Sound after Offset Elimination');
%normalizing
w = D/max(abs(D));
figure,plot(w),title('Normalized Sound');
% hamming window
a1=double(w);
%a1=a1';
N=length(w);
hmw = hamming(N);
temp = a1.*hmw;
a1 = temp;
%Fast Fourier Transform
a2=double(a1);
N=length(a1);
n=ceil(log2(N));
nz=2^n;
fs = 96000;
x_z=0*[1:nz];
x_z(1:N)=a2;
X=fft(x_z);
x1=abs(X);
wq=double(0:nz-1)*(fs/nz);
figure,stem(wq,x1),title('Spectrum');
xlabel('Frequency (Hz)');
ylabel('Magnitude of FFT Coefficients');
nz1=round(nz/2)
x2=x1(1:nz1);
w1=wq(1:nz1);
figure,plot(w1,x2);
title('Half Length Spectrum of Sound');
nz2=nz1*10;
Like you do fft
you can also apply ifft
which is the inverse of the fourier transform (http://www.mathworks.es/es/help/matlab/ref/ifft.html)