I plot some distributions using:
geom_density(aes(my.variable,
color=my.factor,
group=my.replicates,
y=..count..))
I want to plot the average lines over replicates (one line for each levels of my.factor), considering that I don't have the same number of replicates within each level of my.factor --> I can't just remove the 'group' argument, since ..count.. depends on the number of replicates. I would like therefore something like ..count../number of replicates
I sampled in 2 habitats (a and b): fish number and body size of each individual. I had a different sampling effort between habitats. (ra and rb are the number of replicates sampled within the habitats a and b, respectivelly) I am interested in average differences between habitats in term of both fish abundance and body size. However, I don't know how to deal with the fact that I don't have the same number of replicat.
DATA
#number of replicat
ra=4;rb=6
#number of individuals (lambda of poisson distribution)
na=30;nb=60
#size of individuals (lambda of poisson distribution)
sa=90;sb=80
#data for habitat a
dfa=data.frame()
for (ri in 1:ra){
habitat="a"
nb_rep=ra
replicat=paste("r",ri,sep="")
size=rpois(rpois(1,na),sa)
dfa=rbind.data.frame(dfa,data.frame(habitat,nb_rep,replicat,size))
}
#data for habitat b
dfb=data.frame()
for (ri in 1:rb){
habitat="b"
nb_rep=rb
replicat=paste("r",ri,sep="")
size=rpois(rpois(1,nb),sb)
dfb=rbind.data.frame(dfb,data.frame(habitat,nb_rep,replicat,size))
}
#whole data set
df=rbind(dfa,dfb)
PLOTS
require(ggplot2)
summary(df)
ggplot(df,aes(size,color=habitat))+
geom_density(aes(y=..density..))
ggplot(df,aes(size,color=habitat))+
geom_density(aes(y=..count..))
But this is BIASED if habitats have not been sampled with the same effort i.e. different number of replicates
ggplot(df,aes(size,color=habitat,group=paste(habitat,replicat)))+
geom_density(aes(y=..count..))
From this last plot, how to get the average lines over replicates ? Thanks
I don't think you can do this within ggplot
. You can calculate the density yourself and then plot the calculated density. Below I show that it actually works, by reproducing the plot you already have with ggplot(df,aes(size,color=habitat)) + geom_density(aes(y=..count..))
.
require(plyr)
# calculate the density
res <- dlply(df, .(habitat), function(x) density(x$size))
dd <- ldply(res, function(z){
data.frame(size = z[["x"]],
count = z[["y"]]*z[["n"]])
})
# these two plots are essentially the same.
ggplot(dd, aes(size, count, color=habitat)) +
geom_line()
ggplot(df,aes(size,color=habitat))+
geom_density(aes(y=..count..))
Now for the slightly more difficult task of averaging the densities of the different replicates.
# calculate the density
res <- dlply(df, .(habitat), function(dat){
lst <- dlply(dat, .(replicat), function(x) density(x$size,
# specify to and from based on dat, not x.
from=min(dat$size),
to=max(dat$size)
))
data.frame(size=lst[[1]][["x"]],
#count=colMeans(laply(lst, function(a) a[["y"]]), na.rm=TRUE)*nrow(dat),
count=colMeans(laply(lst, function(a) a[["y"]]), na.rm=TRUE)*nrow(dat)/nlevels(droplevels(dat$replicat)),
habitat=dat$habitat[1])
})
dd <- rbindlist(res)
ggplot(dd, aes(size, count, color=habitat)) +
geom_line()