Anybody an idea how to solve this R issue? It is to find a changepoint in a relation, like x=5 in data below.
fitDat <- data.frame(x=1:10, y=c(rnorm(5, sd=0.2),(1:5)+rnorm(5, sd=0.2)))
plot(fitDat$x, fitDat$y)
SAS works beautifully well;
/*simulated example*/
data test;
INPUT id $ x y;
cards;
1 1 -0.22711769
2 2 -0.08712909
3 3 0.06922072
4 4 -0.12940913
5 5 -0.43152927
6 6 1.17685016
7 7 1.83410448
8 8 2.88528795
9 9 4.30078012
10 10 4.84517101
;
run;
proc nlmixed data=test;
parms B0 = 0 B1=1 t0=5 sigma_r=1;
mu1 = (x <= t0)*B0;
mu2 = (x > t0)*(B0 + B1*(x - t0));
mu=mu1+mu2;
model y~normal(mu,sigma_r);
run;
R fails;
changePointOptim <- function(x, int, slope, delta){ # code adapted from https://stats.stackexchange.com/questions/7527/change-point-analysis-using-rs-nls
int + (pmax(delta-x, 0) * slope)
}
# nls
nls(y ~ changePointOptim(x, b0, b1, delta),
data = fitDat,
start = c(b0 = 0, b1 = 1, delta = 5))
# optimization
sqerror <- function (par, x, y)
sum((y - changePointOptim(x, par[1], par[2], par[3]))^2)
minObj <- optim(par = c(0, 1, 3), fn = sqerror,
x = fitDat$x, y = fitDat$y, method = "BFGS")
minObj$par
# nlme
library(nlme)
nlmeChgpt <- nlme(y ~ changePointOptim(b0, b1, delta,x),
data = fitDat,
fixed = b0 + b1 + delta,
start = c(b0=0, b1=1, delta=5))
summary(nlmeChgpt)
As it is a simple case with a clear signal, R should work. I wonder what I’m doing wrong in R (I used some code from https://stats.stackexchange.com/questions/7527/change-point-analysis-using-rs-nls). Anybody a suggestion/solution?
Thanks!
Willem
You've got a sign wrong in changePointOptim. Then:
set.seed(0)
fitDat <- data.frame(x=1:10, y=c(rnorm(5, sd=0.2),(1:5)+rnorm(5, sd=0.2)))
plot(fitDat$x, fitDat$y)
changePointOptim <- function(x, int, slope, delta){ # code adapted from http://stats.stackexchange.com/questions/7527/change-point-analysis-using-rs-nls
int + (pmax(x-delta, 0) * slope) ####Chamnged sign here
}
# optimization
sqerror <- function (par, x, y)
sum((y - changePointOptim(x, par[1], par[2], par[3]))^2)
minObj <- optim(par = c(0, 1, 3), fn = sqerror,
x = fitDat$x, y = fitDat$y, method = "BFGS")
gives:
> minObj$par
[1] 0.1581436 1.1762401 5.5963392
which is about what you started with.
# nls
nls(y ~ changePointOptim(x, b0, b1, delta),
data = fitDat,
start = list(b0 = 0, b1 = 1, delta = 5)) ##Note it is a list
gives the same:
0.1581 1.1762 5.5963
Not sure about the NLME at the moment