I'm implementing an m,n,k-game, a generalized version of tic-tac-toe, where m is the number of rows, n is the number of columns and k is the number of pieces that a player needs to put in a row to win. I have implemented a check for a win, but I haven't figured out a satisfactory way to check before the board is full of pieces, if no player can win the game. In other words, there might be empty slots on the board, but they cannot be filled in such a way that one player would win.
My question is, how to check this efficiently? The following algorithm is the best that I can think of. It checks for two conditions:
A. Go over all board positions in all 4 directions (top to bottom, right to left, and both diagonal directions). If say k = 5, and 4 (= k-1) consecutive empty slots are found, stop checking and report "no tie". This doesn't take into account for example the following situation:
OX----XO (Example 1)
where a) there are 4 empty consecutive slots (-
) somewhere between two X
's, b) next it is O
's turn, c) there are less than four other empty positions on the board and no player can win by putting pieces to those, and d) it is not possible to win in any other direction than horizontally in the shown slots either. Now we know that it is a tie because O
will eventually block the last winning possibility, but erroneously it is not reported yet because there are four consecutive empty slots. That would be ok (but not great). Checking this condition gives a good speed-up at the beginning when the checking algorithm usually finds such a case early, but it gets slower as more pieces are put on the board.
B. If this k-1-consecutive-empty-slots-condition isn't met, the algorithm would check the slots again consecutively in all 4 directions. Suppose we are currently checking from left to right. If at some point an X
is encountered and it was preceded by an O
or -
(empty slot) or a board border, then start counting the number of consecutive X
's and empty slots, counting in this first encountered X
. If one can count to 5, then one knows it is possible for X
to win, and "no tie" is reported. If an O
preceded by an X
is encountered before 5 consecutive X
's, then X
cannot win in those 5 slots from left to right starting from where we started counting. For example:
X-XXO (Example 2)
12345
Here we started checking at position 1, counted to 4, and encountered an O
. In this case, one would continue from the encountered O
in the same way, trying to find 5 consecutive O
's or empty slots this time. In another case when counting X
's or empty slots, an O
preceded by one or more empty slots is encountered, before counting to 5. For example:
X-X-O (Example 3)
12345
In this case we would again continue from the O
at position 5, but add to the new counter (of consecutive O
's or empty slots) the number of consecutive empty slots that preceded O
, here 1, so that we wouldn't miss for example this possible winning position:
X-X-O---X (Example 4)
In this way, in the worst case, one would have to go through all positions 4 times (4 directions, and of course diagonals whose length is less than k can be skipped), giving running time O(mn).
The best way I could think of was doing these two described checks, A and B, in one pass. If the checking algorithm gets through all positions in all directions without reporting "no tie", it reports a tie.
Knowing that you can check a win just by checking in the vicinity of the last piece that was added with running time O(k)
, I was wondering if there were quicker ways to do an early check for a tie. Doesn't have to be asymptotically quicker. I'm currently keeping the pieces in a two-dimensional array. Is there maybe a data structure that would allow an efficient check? One approach: what is the highest threshold of moves that one can wait the players to make before running any checks for a tie at all?
There are many related questions at Stack Overflow, for example this, but all discussions I could find either only pointed out the obvious tie condition, where the number of moves made is equal to the size of the board (or they checked if the board is full), or handled only the special case where the board is square: m = n. For example this answer claims to do the check for a tie in constant time, but only works when m = n = k. I'm interested in reporting the tie as early as possible and for general m,n and k. Also if the algorithm works for more than two players, that would be neat.
Actually the constant time solution you referenced only works when k = m = n as well. If k is smaller then I don't see any way to adapt the solution to get constant time, basically because there are multiple locations on each row/column/diagonal where a winning consecutive k 0's or 1's may occur.
However, maintaining auxiliary information for each row/column/diagonal can give a speed up. For each row/column/diagonal, you can store the start and end locations for consecutive occurrences of 1's and blanks as possible winning positions for player 1, and similarly store start and end locations of consecutive occurrences of 0's and blanks as possible winning positions for player 0. Note that for a given row/column/diagonal, intervals for player 0 and 1 may overlap if they contain blanks. For each row/column/diagonal, store the intervals for player 1 in sorted order in a self-balancing binary tree (Note you can do this because the intervals are disjoint). Similarly store the intervals for player 0 sorted in a tree. When a player makes a move, find the row/column/diagonals that contain the move location and update the intervals containing the move in the appropriate row column and diagonal trees for the player that did not make the move. For the player that did not make a move, this will split an interval (if it exists) into smaller intervals that you can replace the old interval with and then rebalance the tree. If an interval ever gets to length less than k you can delete it. If a tree ever becomes empty then it is impossible for that player to win in that row/column/diagonal. You can maintain a counter of how many rows/columns/diagonals are impossible to win for each player, and if the counter ever reaches the total number of rows/columns/diagonals for both players then you know you have a tie. The total running time for this is O(log(n/k) + log(m/k)) to check for a tie per move, with O(mn/k) extra space.
You can similarly maintain trees that store consecutive intervals of 1's (without spaces) and update the trees in O(log n + log m) time when a move is made, basically searching for the positions before and after the move in your tree and updating the interval(s) found and merging two intervals if two intervals (before and after) are found. Then you report a win if an interval is ever created/updated and obtains length greater than or equal to k. Similarly for player 0. Total time to check for a win is O(log n + log m) which may be better than O(k) depending on how large k is. Extra space is O(mn).