I have recently been running into performance issues when using the Thrust
library. These come from thrust allocating memory in the base of a large nested loop structure. This is obviously unwanted, with ideal execution using a pre-allocated slab of global memory. I would like to remove or improve the offending code through one of three ways:
Although the third option would be my normal preferred choice, the operation that I want to perform is a copy_if
/select_if
type operation where both the data and indexes are returned. Writing a custom kernel would likely be reinventing the wheel and so I would prefer to go with one of the other two options.
I have been hearing great things about CUB, and so I see this as an ideal chance to use it in anger. What I would like to know is:
How would one implement a CUB select_if
with returned indexes?
Can this be done with an ArgIndexInputIterator
and a functor like so?
struct GreaterThan
{
int compare;
__host__ __device__ __forceinline__
GreaterThan(int compare) : compare(compare) {}
__host__ __device__ __forceinline__
bool operator()(const cub::ArgIndexInputIterator<int> &a) const {
return (a.value > compare);
}
};
with the following in the main body of the code:
//d_in = device int array
//d_temp_storage = some preallocated block
int threshold_value;
GreaterThan select_op(threshold_value);
cub::ArgIndexInputIterator<int> input_itr(d_in);
cub::ArgIndexInputIterator<int> output_itr(d_out); //????
CubDebugExit(DeviceSelect::If(d_temp_storage, temp_storage_bytes, input_itr, output_itr, d_num_selected, num_items, select_op));
Will this try and do any memory allocation under the hood?
EDIT:
So going off Robert Crovella's comment, the functor should take the product of dereferencing a cub::ArgIndexInputIterator<int>
, which should be a cub::ItemOffsetPair<int>
making the functor now:
struct GreaterThan
{
int compare;
__host__ __device__ __forceinline__
GreaterThan(int compare) : compare(compare) {}
__host__ __device__ __forceinline__
bool operator()(const cub::ItemOffsetPair<int,int> &a) const {
return (a.value > compare);
}
};
and in the code, d_out
should be a device array of cub::ItemOffsetPair<int,int>
:
//d_in = device int array
//d_temp_storage = some preallocated block
cub::ItemOffsetPair<int,int> * d_out;
//allocate d_out
int threshold_value;
GreaterThan select_op(threshold_value);
cub::ArgIndexInputIterator<int,int> input_itr(d_in);
CubDebugExit(DeviceSelect::If(d_temp_storage, temp_storage_bytes, input_itr, d_out, d_num_selected, num_items, select_op));
After some fiddling and asking around, I was able to get a simple code along the lines of what you suggest working:
$ cat t348.cu
#include <cub/cub.cuh>
#include <stdio.h>
#define DSIZE 6
struct GreaterThan
{
__host__ __device__ __forceinline__
bool operator()(const cub::ItemOffsetPair<int, ptrdiff_t> &a) const {
return (a.value > DSIZE/2);
}
};
int main(){
int num_items = DSIZE;
int *d_in;
cub::ItemOffsetPair<int,ptrdiff_t> * d_out;
int *d_num_selected;
int *d_temp_storage = NULL;
size_t temp_storage_bytes = 0;
cudaMalloc((void **)&d_in, num_items*sizeof(int));
cudaMalloc((void **)&d_num_selected, sizeof(int));
cudaMalloc((void **)&d_out, num_items*sizeof(cub::ItemOffsetPair<int,ptrdiff_t>));
int h_in[DSIZE] = {5, 4, 3, 2, 1, 0};
cudaMemcpy(d_in, h_in, num_items*sizeof(int), cudaMemcpyHostToDevice);
cub::ArgIndexInputIterator<int *> input_itr(d_in);
cub::DeviceSelect::If(d_temp_storage, temp_storage_bytes, input_itr, d_out, d_num_selected, num_items, GreaterThan());
cudaMalloc(&d_temp_storage, temp_storage_bytes);
cub::DeviceSelect::If(d_temp_storage, temp_storage_bytes, input_itr, d_out, d_num_selected, num_items, GreaterThan());
int h_num_selected = 0;
cudaMemcpy(&h_num_selected, d_num_selected, sizeof(int), cudaMemcpyDeviceToHost);
cub::ItemOffsetPair<int, ptrdiff_t> h_out[h_num_selected];
cudaMemcpy(h_out, d_out, h_num_selected*sizeof(cub::ItemOffsetPair<int, ptrdiff_t>), cudaMemcpyDeviceToHost);
for (int i =0 ; i < h_num_selected; i++)
printf("index: %d, offset: %d, value: %d\n", i, h_out[i].offset, h_out[i].value);
return 0;
}
$ nvcc -arch=sm_20 -o t348 t348.cu
$ ./t348
index: 0, offset: 0, value: 5
index: 1, offset: 1, value: 4
$
RHEL 6.2, cub v1.2.2, CUDA 5.5