What is the most efficient way to use groupby and in parallel apply a filter in pandas?
Basically I am asking for the equivalent in SQL of
select *
...
group by col_name
having condition
I think there are many uses cases ranging from conditional means, sums, conditional probabilities, etc. which would make such a command very powerful.
I need a very good performance, so ideally such a command would not be the result of several layered operations done in python.
As mentioned in unutbu's comment, groupby's filter is the equivalent of SQL'S HAVING:
In [11]: df = pd.DataFrame([[1, 2], [1, 3], [5, 6]], columns=['A', 'B'])
In [12]: df
Out[12]:
A B
0 1 2
1 1 3
2 5 6
In [13]: g = df.groupby('A') # GROUP BY A
In [14]: g.filter(lambda x: len(x) > 1) # HAVING COUNT(*) > 1
Out[14]:
A B
0 1 2
1 1 3
You can write more complicated functions (these are applied to each group), provided they return a plain ol' bool:
In [15]: g.filter(lambda x: x['B'].sum() == 5)
Out[15]:
A B
0 1 2
1 1 3
Note: potentially there is a bug where you can't write you function to act on the columns you've used to groupby... a workaround is the groupby the columns manually i.e. g = df.groupby(df['A']))
.