I want to implement a function to get the absolute value of a number in java: do nothing if it is positive, if it is negative, convert to positive.
I want to do this only using bit manipulations and no number comparators.
Please help
Well a negation:
-n
Is the same as the two's complement:
~n + 1
The problem is here you only want to negate if the value is < 0. You can find that out by using a logical shift to see if the MSB is set:
n >>> 31
A complement would be the same as an XOR with all 1's, something like (for a 4-bit integer):
~1010 == 1010 ^ 1111
And we can get a mask with the arithmetic right shift:
n >> 31
Absolute value says:
So putting it together we can do the following:
static int abs(int n) {
return (n ^ (n >> 31)) + (n >>> 31);
}
Which computes:
I'm not sure there's an easy way to do it without the addition. Addition involves any number of carries, even for a simple increment.
For example 2 + 1 has no carry:
10 + 1 == 11
But 47 + 1 has 4 carries:
101111 + 1 == 110000
Doing the add and carry with bitwise/bit shifts would basically just be a loop unroll and pointless.
(Edit!)
Just to be silly, here is an increment and carry:
static int abs(int n) {
int s = n >>> 31;
n ^= n >> 31;
int c;
do {
c = (n & s) << 1;
n ^= s;
} while((s = c) != 0);
return n;
}
The way it works is it flips the first bit, then keeps flipping until it finds a 0. So then the job is just to unroll the loop. The loop body can be represented by a somewhat ridiculous compound one-liner.
static int abs(int n) {
int s = n >>> 31;
n ^= n >> 31;
int c = (n & s) << 1;
c = ((n ^= s) & (s = c)) << 1; // repeat this line 30 more times
n ^= s;
return n;
}
So there's an abs using only bitwise and bit shifts.
These aren't faster than Math.abs. Math.abs just returns n < 0 ? -n : n
which is trivial. And actually the loop unroll totally sucks in comparison. Just a curiosity I guess. Here's my benchmark:
Math.abs: 4.627323150634766ns shift/xor/add abs: 6.729459762573242ns loop abs: 12.028789520263672ns unrolled abs: 32.47122764587402ns bit hacks abs: 6.380939483642578ns
(The bit hacks abs is the non-patented one shown here which is basically the same idea as mine except a little harder to understand.)