Search code examples
rdata.tablestrsplitstringr

best way to manipulate strings in big data.table


I have a 67MM row data.table with people names and surname separated by spaces. I just need to create a new column for each word.

Here is an small subset of the data:

n <- structure(list(Subscription_Id = c("13.855.231.846.091.000", 
"11.156.048.529.090.800", "24.940.584.090.830", "242.753.039.111.124", 
"27.843.782.090.830", "13.773.513.145.090.800", "25.691.374.090.830", 
"12.236.174.155.090.900", "252.027.904.121.210", "11.136.991.054.110.100"
), Account_Desc = c("AGUAYO CARLA", "LEIVA LILIANA", "FULLANA MARIA LAURA", 
"PETREL SERGIO", "IPTICKET SRL", "LEDESMA ORLANDO", "CATTANEO LUIS RAUL", 
"CABRAL CARMEN ESTELA", "ITURGOYEN HECTOR", "CASA CASILDO"), 
    V1 = c("AGUAYO", "LEIVA", "FULLANA", "PETREL", "IPTICKET", 
    "LEDESMA", "CATTANEO", "CABRAL", "ITURGOYEN", "CASA"), V2 = c("CARLA", 
    "LILIANA", "MARIA", "SERGIO", "SRL", "ORLANDO", "LUIS", "CARMEN", 
    "HECTOR", "CASILDO"), V3 = c(NA, NA, "LAURA", NA, NA, NA, 
    "RAUL", "ESTELA", NA, NA), `NA` = c(NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_
    )), .Names = c("Subscription_Id", "Account_Desc", "V1", "V2", 
"V3", NA), class = c("data.table", "data.frame"), row.names = c(NA, 
-10L), .internal.selfref = <pointer: 0x0000000000200788>)


require("data.table")
n <- data.table(n)

Expected Output

#           Subscription_Id         Account_Desc        V1      V2     V3 NA
# 1: 13.855.231.846.091.000         AGUAYO CARLA    AGUAYO   CARLA     NA NA
# 2: 11.156.048.529.090.800        LEIVA LILIANA     LEIVA LILIANA     NA NA
# 3:     24.940.584.090.830  FULLANA MARIA LAURA   FULLANA   MARIA  LAURA NA

1st Attempt

How to make this work would be the first question

library(stringr)
# This separates the strings, but i loose the Subscription_Id variable.
n[, str_split_fixed(Account_Desc, "[ +]", 4)]

# This doesn't work.
n[, paste0("V",1:4) := str_split_fixed(Account_Desc, "[ +]", 4)]

2nd Attempt

This works, but i seem to be doing the calculation 3 times. Not sure if its the most effiecient way

cols = paste0("V",1:3)
for(j in 1:3){
  set(n,i=NULL,j=cols[j],value = sapply(strsplit(as.character(n$Account_Desc),"[ +]"), "[", j))
}

Let's use big_n to benchmarck

big_n <- data.table(Subscription_Id = rep(n[,Subscription_Id],1e7),
                    Account_Desc = rep(n[,Account_Desc],1e7)
                    )

Solution

  • I don't work with datasets anywhere near this scale, so I have no idea if this is going to be of use or not. One thing that comes to mind is to use a matrix and matrix indexing.

    Since I'm impatient, I've only tried it on 1e5 rows on my slow system :-)

    Create your sample data

    big_n <- data.table(Subscription_Id = rep(n[,Subscription_Id],1e5),
                        Account_Desc = rep(n[,Account_Desc],1e5))
    

    Write a function to create your matrix

    StringMat <- function(input) {
      Temp <- strsplit(input, " ", fixed = TRUE)
      Lens <- vapply(Temp, length, 1L)
      A <- unlist(Temp, use.names = FALSE)
      Rows <- rep(sequence(length(Temp)), Lens)
      Cols <- sequence(Lens)
      m <- matrix(NA, nrow = length(Temp), ncol = max(Lens),
                  dimnames = list(NULL, paste0("V", sequence(max(Lens)))))
      m[cbind(Rows, Cols)] <- A
      m
    }
    

    Time it and view the output

    system.time(outB1 <- cbind(big_n, StringMat(big_n$Account_Desc)))
    #    user  system elapsed 
    #   4.524   0.000   4.533 
    outB1
    #                 Subscription_Id         Account_Desc        V1      V2     V3
    #       1: 13.855.231.846.091.000         AGUAYO CARLA    AGUAYO   CARLA     NA
    #       2: 11.156.048.529.090.800        LEIVA LILIANA     LEIVA LILIANA     NA
    #       3:     24.940.584.090.830  FULLANA MARIA LAURA   FULLANA   MARIA  LAURA
    #       4:    242.753.039.111.124        PETREL SERGIO    PETREL  SERGIO     NA
    #       5:     27.843.782.090.830         IPTICKET SRL  IPTICKET     SRL     NA
    #      ---                                                                     
    #  999996: 13.773.513.145.090.800      LEDESMA ORLANDO   LEDESMA ORLANDO     NA
    #  999997:     25.691.374.090.830   CATTANEO LUIS RAUL  CATTANEO    LUIS   RAUL
    #  999998: 12.236.174.155.090.900 CABRAL CARMEN ESTELA    CABRAL  CARMEN ESTELA
    #  999999:    252.027.904.121.210     ITURGOYEN HECTOR ITURGOYEN  HECTOR     NA
    # 1000000: 11.136.991.054.110.100         CASA CASILDO      CASA CASILDO     NA
    

    Correct the set_method function and compare timings

    set_method <- function(DT){
      cols = paste0("V",1:3)
      for(j in 1:3){
        set(DT,i=NULL,j=cols[j],
            value = sapply(strsplit(as.character(DT[, Account_Desc, with = TRUE]),
                                    "[ +]"), "[", j))
      }
    }
    
    system.time(set_method(big_n))
    #    user  system elapsed 
    #  25.319   0.022  25.586 
    

    Reset the "big_n" dataset and try out str_split_fixed (ouch!)

    big_n[, c("V1", "V2", "V3") := NULL]
    
    library(stringr)
    system.time(outBrodie <- cbind(big_n, as.data.table(str_split_fixed(
      big_n$Account_Desc, "[ +]", 4))))
    #    user  system elapsed 
    # 204.966   0.514 206.910