Search code examples
pythonmatplotlibpyfitsastropyaplpy

How could I convert a contour plot (matplotlib) to FITS format with header?


I need to make a contour plot and overlie the contours on the image. I have used aplpy library to overlie the contours on an astronomical image. I have downloaded the 2MASS data in APlpy website(https://github.com/aplpy/aplpy-examples/tree/master/data) and wrote the following piece of code:

import numpy as np
import aplpy
import atpy
from pyavm import AVM
import scipy
import matplotlib.pyplot as plt
import scipy.ndimage
from matplotlib import cm
import montage_wrapper
import matplotlib.colors as colors
from scipy import stats

def get_contour_verts(cn):
    contours = []
    # for each contour line
    for cc in cn.collections:
        paths = []
        # for each separate section of the contour line
        for pp in cc.get_paths():
            xy = []
            # for each segment of that section
            for vv in pp.iter_segments():
                xy.append(vv[0])
            paths.append(np.vstack(xy))
        contours.append(paths)
    return contours

# Convert all images to common projection
aplpy.make_rgb_cube(['2MASS_h.fits', '2MASS_j.fits', '2MASS_k.fits'], '2MASS_rgb.fits')

# Customize it
aplpy.make_rgb_image('2MASS_rgb.fits','2MASS_rgb_contour.png',embed_avm_tags=True)

# Launch APLpy figure of 2D cube
img = aplpy.FITSFigure('2MASS_rgb_contour.png')
img.show_rgb()

# Modify the tick labels for precision and format
img.tick_labels.set_xformat('hhmm')
img.tick_labels.set_yformat('ddmm')
# Move the tick labels
img.tick_labels.set_xposition('top')
img.tick_labels.set_yposition('right')
img.tick_labels.set_font(size='small', family='sans-serif', style='normal')

data = scipy.loadtxt('sources.txt')
m1=data[:,0]
m2=data[:,1]
xmin = m1.min()
xmax = m1.max()
ymin = m2.min()
ymax = m2.max()
#Gridding the data 

X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
positions = np.vstack([X.ravel(), Y.ravel()])
values = np.vstack([m1, m2])
kernel = stats.gaussian_kde(values)
Z = np.reshape(kernel(positions).T, X.shape)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r, extent=[xmin, xmax, ymin, ymax])
ax.plot(m1, m2, 'k.', markersize=2)
ax.set_xlim([xmin, xmax])
ax.set_ylim([ymin, ymax])

CS = plt.contour(X, Y, Z)
Contour_arrays=get_contour_verts(CS)

#Adding contour plots
for contours_at_level in Contour_arrays:
    radec = [img.pixel2world(*verts.T) for verts in contours_at_level]
    new_radec=[]
    for coor in radec:
        #new_radec.append(np.column_stack((coor[0], coor[1])))
        new_radec.append(np.vstack((coor[0], coor[1])))
    print new_radec
    img.show_lines(new_radec,color='red', zorder=100)

img.save('tutorial.png')

It seems it does not still work at all.


Solution

  • You can't "save contours as a FITS file" directly, but there are other approaches you can try.

    You can use the matplotlib._cntr tool as described here: Python: find contour lines from matplotlib.pyplot.contour() to get the endpoints in figure coordinates, then use the WCS to convert between pixel and world coordinates. aplpy.FITSFigures have convenience functions, F.world2pixel and F.pixel2world, which each accept 2 arrays:

    F.pixel2world(arange(5),arange(5))
    

    So if you are working with a grid that is identical to that shown in the FITSFigure window, you could convert your points to world coordinates and plot them with show_lines:

    ra,dec = F.pixel2world(xpix,ypix)
    F.show_lines([[ra,dec]])
    

    or for a more realistic contour case, now copying the code from the linked article:

    import numpy as np
    import aplpy
    
    def get_contour_verts(cn):
        contours = []
        # for each contour line
        for cc in cn.collections:
            paths = []
            # for each separate section of the contour line
            for pp in cc.get_paths():
                xy = []
                # for each segment of that section
                for vv in pp.iter_segments():
                    xy.append(vv[0])
                paths.append(np.vstack(xy))
            contours.append(paths)
    
        return contours
    
    # This line is copied from the question's code, and assumes that has been run previously
    CS = plt.contour(Xgrid, Ygrid, Hsmooth,levels=loglvl,extent=extent,norm=LogNorm())
    
    contours = get_contour_verts(CS) # use the linked code
    
    
    gc = aplpy.FITSFigure('2MASS.fits',figsize=(10,9))
    
    # each level comes with a different set of vertices, so you have to loop over them
    for contours_at_level in Contour_arrays:
        clines = [cl.T for cl in contours_at_level]
        img.show_lines(clines,color='red', zorder=100)
    

    Still the simplest approach is, if you have a FITS file from which you're generating said contours, just use that file directly. Or if you don't have a FITS file, you can make one with pyfits by creating your own header.