Given a dataframe with different categorical variables, how do I return a cross-tabulation with percentages instead of frequencies?
df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 6,
'B' : ['A', 'B', 'C'] * 8,
'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
'D' : np.random.randn(24),
'E' : np.random.randn(24)})
pd.crosstab(df.A,df.B)
B A B C
A
one 4 4 4
three 2 2 2
two 2 2 2
Expected output:
B A B C
A
one .33 .33 .33
three .33 .33 .33
two .33 .33 .33
pd.crosstab(df.A, df.B).apply(lambda r: r/r.sum(), axis=1)
Basically you just have the function that does row/row.sum()
, and you use apply
with axis=1
to apply it by row.
(If doing this in Python 2, you should use from __future__ import division
to make sure division always returns a float.)