Search code examples
pythonrnumpyscipymathematical-optimization

correct usage of scipy.optimize.fmin_bfgs required versus R code


I am used to doing all my statistics in R and python for all the peripheral tasks. Just for fun I attempted a BFGS optimization to compare it to the ordinary LS result - both in python using scipy/numpy. But the results do not match. I do not see any errors. I also attach the equivalent code in R (which works). Can anyone correct my usage of scipy.optimize.fmin_bfgs to match the OLS or R results ?

import csv
import numpy as np
import scipy as sp
from scipy import optimize

class DataLine:
    def __init__(self,row):
        self.Y = row[0]
        self.X = [1.0] + row[2:len(row)]  
        # 'Intercept','Food','Decor', 'Service', 'Price' and remove the name
    def allDataLine(self):
        return self.X + list(self.Y) # return operator.add(self.X,list(self.Y))
    def xData(self):
        return np.array(self.X,dtype="float64")
    def yData(self):
        return np.array([self.Y],dtype="float64")
def fnRSS(vBeta, vY, mX):
  return np.sum((vY - np.dot(mX,vBeta))**2)
if __name__ == "__main__":
    urlSheatherData = "/Hans/workspace/optimsGLMs/MichelinNY.csv"
    # downloaded from "http://www.stat.tamu.edu/~sheather/book/docs/datasets/MichelinNY.csv"
    reader = csv.reader(open(urlSheatherData), delimiter=',', quotechar='"')
    headerTuple = tuple(reader.next())
    dataLines = map(DataLine, reader)
    Ys = map(DataLine.yData,dataLines)
    Xs = map(DataLine.xData,dataLines)
    # a check and an initial guess ...
    vBeta = np.array([-1.5, 0.06, 0.04,-0.01, 0.002]).reshape(5,1)
    print np.sum((Ys-np.dot(Xs,vBeta))**2)
    print fnRSS(vBeta,Ys,Xs)
    lsBetas = np.linalg.lstsq(Xs, Ys)
    print lsBetas[1]
    # prints the right numbers
    print lsBetas[0]
    optimizedBetas = sp.optimize.fmin_bfgs(fnRSS, x0=vBeta, args=(Ys,Xs))
    # completely off .. 
    print optimizedBetas

The result of the optimization is:

Optimization terminated successfully.
         Current function value: 6660.000006
         Iterations: 276
         Function evaluations: 448
[  4.51296549e-01  -5.64005114e-06  -3.36618459e-06   4.98821735e-06
   9.62197362e-08]

But it really should match the OLS results achieved in lsBetas = np.linalg.lstsq(Xs, Ys):

[[-1.49209249]
 [ 0.05773374]
 [ 0.044193  ]
 [-0.01117662]
 [ 0.00179794]]

Here is the R code in case it is useful (it also has the advantage of being able to read directly from the URL):

urlSheatherData = "http://www.stat.tamu.edu/~sheather/book/docs/datasets/MichelinNY.csv"
dfSheather = as.data.frame(read.csv(urlSheatherData, header = TRUE))
vY = as.matrix(dfSheather['InMichelin'])
mX = as.matrix(dfSheather[c('Service','Decor', 'Food', 'Price')])
mX = cbind(1, mX)
fnRSS = function(vBeta, vY, mX) { return(sum((vY - mX %*% vBeta)^2)) }
vBeta0 = rep(0, ncol(mX))
optimLinReg = optim(vBeta0, fnRSS,mX = mX, vY = vY, method = 'BFGS', hessian=TRUE)
print(optimLinReg$par)

Solution

  • First, let's make arrays out of list:

    >>> Xs = np.vstack(Xs)
    >>> Ys = np.vStack(Ys)
    

    Then, fnRSS is incorrectly translated, it's argument, beta, is passed transposed. Can be fixed with

    >>> def fnRSS(vBeta, vY, vX):
    ...     return np.sum((vY.T - np.dot(vX, vBeta))**2)
    

    Final result:

    >>> sp.optimize.fmin_bfgs(fnRSS, x0=vBeta, args=(Ys,Xs))
    Optimization terminated successfully.
             Current function value: 26.323906
             Iterations: 9
             Function evaluations: 98
             Gradient evaluations: 14
    array([-1.49208546,  0.05773327,  0.04419307, -0.01117645,  0.00179791])
    

    Sidenote, consider using pandas read_csv parser or numpy genfromtxt or recfromcsv to read csv data into array instead of custom written parsers. No problems to read from url either:

    >>> import pandas as pd
    >>> urlSheatherData = "http://www.stat.tamu.edu/~sheather/book/docs/datasets/MichelinNY.csv"
    >>> data = pd.read_csv(urlSheatherData)
    >>> data[['Service','Decor', 'Food', 'Price']].head()
       Service  Decor  Food  Price
    0       19     20    19     50
    1       16     17    17     43
    2       21     17    23     35
    3       16     23    19     52
    4       19     12    23     24
    
    [5 rows x 4 columns]
    >>> data['InMichelin'].head()
    0    0
    1    0
    2    0
    3    1
    4    0
    Name: InMichelin, dtype: int64