Search code examples
pythonmathoptimizationprimes

Fastest way to list all primes below N


This is the best algorithm I could come up.

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

Can it be made even faster?

This code has a flaw: Since numbers is an unordered set, there is no guarantee that numbers.pop() will remove the lowest number from the set. Nevertheless, it works (at least for me) for some input numbers:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

Solution

  • Warning: timeit results may vary due to differences in hardware or version of Python.

    Below is a script which compares a number of implementations:

    Many thanks to stephan for bringing sieve_wheel_30 to my attention. Credit goes to Robert William Hanks for primesfrom2to, primesfrom3to, rwh_primes, rwh_primes1, and rwh_primes2.

    Of the plain Python methods tested, with psyco, for n=1000000, rwh_primes1 was the fastest tested.

    +---------------------+-------+
    | Method              | ms    |
    +---------------------+-------+
    | rwh_primes1         | 43.0  |
    | sieveOfAtkin        | 46.4  |
    | rwh_primes          | 57.4  |
    | sieve_wheel_30      | 63.0  |
    | rwh_primes2         | 67.8  |    
    | sieveOfEratosthenes | 147.0 |
    | ambi_sieve_plain    | 152.0 |
    | sundaram3           | 194.0 |
    +---------------------+-------+
    

    Of the plain Python methods tested, without psyco, for n=1000000, rwh_primes2 was the fastest.

    +---------------------+-------+
    | Method              | ms    |
    +---------------------+-------+
    | rwh_primes2         | 68.1  |
    | rwh_primes1         | 93.7  |
    | rwh_primes          | 94.6  |
    | sieve_wheel_30      | 97.4  |
    | sieveOfEratosthenes | 178.0 |
    | ambi_sieve_plain    | 286.0 |
    | sieveOfAtkin        | 314.0 |
    | sundaram3           | 416.0 |
    +---------------------+-------+
    

    Of all the methods tested, allowing numpy, for n=1000000, primesfrom2to was the fastest tested.

    +---------------------+-------+
    | Method              | ms    |
    +---------------------+-------+
    | primesfrom2to       | 15.9  |
    | primesfrom3to       | 18.4  |
    | ambi_sieve          | 29.3  |
    +---------------------+-------+
    

    Timings were measured using the command:

    python -mtimeit -s"import primes" "primes.{method}(1000000)"
    

    with {method} replaced by each of the method names.

    primes.py:

    #!/usr/bin/env python
    import psyco; psyco.full()
    from math import sqrt, ceil
    import numpy as np
    
    def rwh_primes(n):
        # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
        """ Returns  a list of primes < n """
        sieve = [True] * n
        for i in xrange(3,int(n**0.5)+1,2):
            if sieve[i]:
                sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)
        return [2] + [i for i in xrange(3,n,2) if sieve[i]]
    
    def rwh_primes1(n):
        # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
        """ Returns  a list of primes < n """
        sieve = [True] * (n/2)
        for i in xrange(3,int(n**0.5)+1,2):
            if sieve[i/2]:
                sieve[i*i/2::i] = [False] * ((n-i*i-1)/(2*i)+1)
        return [2] + [2*i+1 for i in xrange(1,n/2) if sieve[i]]
    
    def rwh_primes2(n):
        # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
        """ Input n>=6, Returns a list of primes, 2 <= p < n """
        correction = (n%6>1)
        n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
        sieve = [True] * (n/3)
        sieve[0] = False
        for i in xrange(int(n**0.5)/3+1):
          if sieve[i]:
            k=3*i+1|1
            sieve[      ((k*k)/3)      ::2*k]=[False]*((n/6-(k*k)/6-1)/k+1)
            sieve[(k*k+4*k-2*k*(i&1))/3::2*k]=[False]*((n/6-(k*k+4*k-2*k*(i&1))/6-1)/k+1)
        return [2,3] + [3*i+1|1 for i in xrange(1,n/3-correction) if sieve[i]]
    
    def sieve_wheel_30(N):
        # http://zerovolt.com/?p=88
        ''' Returns a list of primes <= N using wheel criterion 2*3*5 = 30
    
    Copyright 2009 by zerovolt.com
    This code is free for non-commercial purposes, in which case you can just leave this comment as a credit for my work.
    If you need this code for commercial purposes, please contact me by sending an email to: info [at] zerovolt [dot] com.'''
        __smallp = ( 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
        61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,
        149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
        229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311,
        313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
        409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
        499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
        601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683,
        691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,
        809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,
        907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997)
    
        wheel = (2, 3, 5)
        const = 30
        if N < 2:
            return []
        if N <= const:
            pos = 0
            while __smallp[pos] <= N:
                pos += 1
            return list(__smallp[:pos])
        # make the offsets list
        offsets = (7, 11, 13, 17, 19, 23, 29, 1)
        # prepare the list
        p = [2, 3, 5]
        dim = 2 + N // const
        tk1  = [True] * dim
        tk7  = [True] * dim
        tk11 = [True] * dim
        tk13 = [True] * dim
        tk17 = [True] * dim
        tk19 = [True] * dim
        tk23 = [True] * dim
        tk29 = [True] * dim
        tk1[0] = False
        # help dictionary d
        # d[a , b] = c  ==> if I want to find the smallest useful multiple of (30*pos)+a
        # on tkc, then I need the index given by the product of [(30*pos)+a][(30*pos)+b]
        # in general. If b < a, I need [(30*pos)+a][(30*(pos+1))+b]
        d = {}
        for x in offsets:
            for y in offsets:
                res = (x*y) % const
                if res in offsets:
                    d[(x, res)] = y
        # another help dictionary: gives tkx calling tmptk[x]
        tmptk = {1:tk1, 7:tk7, 11:tk11, 13:tk13, 17:tk17, 19:tk19, 23:tk23, 29:tk29}
        pos, prime, lastadded, stop = 0, 0, 0, int(ceil(sqrt(N)))
        # inner functions definition
        def del_mult(tk, start, step):
            for k in xrange(start, len(tk), step):
                tk[k] = False
        # end of inner functions definition
        cpos = const * pos
        while prime < stop:
            # 30k + 7
            if tk7[pos]:
                prime = cpos + 7
                p.append(prime)
                lastadded = 7
                for off in offsets:
                    tmp = d[(7, off)]
                    start = (pos + prime) if off == 7 else (prime * (const * (pos + 1 if tmp < 7 else 0) + tmp) )//const
                    del_mult(tmptk[off], start, prime)
            # 30k + 11
            if tk11[pos]:
                prime = cpos + 11
                p.append(prime)
                lastadded = 11
                for off in offsets:
                    tmp = d[(11, off)]
                    start = (pos + prime) if off == 11 else (prime * (const * (pos + 1 if tmp < 11 else 0) + tmp) )//const
                    del_mult(tmptk[off], start, prime)
            # 30k + 13
            if tk13[pos]:
                prime = cpos + 13
                p.append(prime)
                lastadded = 13
                for off in offsets:
                    tmp = d[(13, off)]
                    start = (pos + prime) if off == 13 else (prime * (const * (pos + 1 if tmp < 13 else 0) + tmp) )//const
                    del_mult(tmptk[off], start, prime)
            # 30k + 17
            if tk17[pos]:
                prime = cpos + 17
                p.append(prime)
                lastadded = 17
                for off in offsets:
                    tmp = d[(17, off)]
                    start = (pos + prime) if off == 17 else (prime * (const * (pos + 1 if tmp < 17 else 0) + tmp) )//const
                    del_mult(tmptk[off], start, prime)
            # 30k + 19
            if tk19[pos]:
                prime = cpos + 19
                p.append(prime)
                lastadded = 19
                for off in offsets:
                    tmp = d[(19, off)]
                    start = (pos + prime) if off == 19 else (prime * (const * (pos + 1 if tmp < 19 else 0) + tmp) )//const
                    del_mult(tmptk[off], start, prime)
            # 30k + 23
            if tk23[pos]:
                prime = cpos + 23
                p.append(prime)
                lastadded = 23
                for off in offsets:
                    tmp = d[(23, off)]
                    start = (pos + prime) if off == 23 else (prime * (const * (pos + 1 if tmp < 23 else 0) + tmp) )//const
                    del_mult(tmptk[off], start, prime)
            # 30k + 29
            if tk29[pos]:
                prime = cpos + 29
                p.append(prime)
                lastadded = 29
                for off in offsets:
                    tmp = d[(29, off)]
                    start = (pos + prime) if off == 29 else (prime * (const * (pos + 1 if tmp < 29 else 0) + tmp) )//const
                    del_mult(tmptk[off], start, prime)
            # now we go back to top tk1, so we need to increase pos by 1
            pos += 1
            cpos = const * pos
            # 30k + 1
            if tk1[pos]:
                prime = cpos + 1
                p.append(prime)
                lastadded = 1
                for off in offsets:
                    tmp = d[(1, off)]
                    start = (pos + prime) if off == 1 else (prime * (const * pos + tmp) )//const
                    del_mult(tmptk[off], start, prime)
        # time to add remaining primes
        # if lastadded == 1, remove last element and start adding them from tk1
        # this way we don't need an "if" within the last while
        if lastadded == 1:
            p.pop()
        # now complete for every other possible prime
        while pos < len(tk1):
            cpos = const * pos
            if tk1[pos]: p.append(cpos + 1)
            if tk7[pos]: p.append(cpos + 7)
            if tk11[pos]: p.append(cpos + 11)
            if tk13[pos]: p.append(cpos + 13)
            if tk17[pos]: p.append(cpos + 17)
            if tk19[pos]: p.append(cpos + 19)
            if tk23[pos]: p.append(cpos + 23)
            if tk29[pos]: p.append(cpos + 29)
            pos += 1
        # remove exceeding if present
        pos = len(p) - 1
        while p[pos] > N:
            pos -= 1
        if pos < len(p) - 1:
            del p[pos+1:]
        # return p list
        return p
    
    def sieveOfEratosthenes(n):
        """sieveOfEratosthenes(n): return the list of the primes < n."""
        # Code from: <[email protected]>, Nov 30 2006
        # http://groups.google.com/group/comp.lang.python/msg/f1f10ced88c68c2d
        if n <= 2:
            return []
        sieve = range(3, n, 2)
        top = len(sieve)
        for si in sieve:
            if si:
                bottom = (si*si - 3) // 2
                if bottom >= top:
                    break
                sieve[bottom::si] = [0] * -((bottom - top) // si)
        return [2] + [el for el in sieve if el]
    
    def sieveOfAtkin(end):
        """sieveOfAtkin(end): return a list of all the prime numbers <end
        using the Sieve of Atkin."""
        # Code by Steve Krenzel, <[email protected]>, improved
        # Code: https://web.archive.org/web/20080324064651/http://krenzel.info/?p=83
        # Info: http://en.wikipedia.org/wiki/Sieve_of_Atkin
        assert end > 0
        lng = ((end-1) // 2)
        sieve = [False] * (lng + 1)
    
        x_max, x2, xd = int(sqrt((end-1)/4.0)), 0, 4
        for xd in xrange(4, 8*x_max + 2, 8):
            x2 += xd
            y_max = int(sqrt(end-x2))
            n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
            if not (n & 1):
                n -= n_diff
                n_diff -= 2
            for d in xrange((n_diff - 1) << 1, -1, -8):
                m = n % 12
                if m == 1 or m == 5:
                    m = n >> 1
                    sieve[m] = not sieve[m]
                n -= d
    
        x_max, x2, xd = int(sqrt((end-1) / 3.0)), 0, 3
        for xd in xrange(3, 6 * x_max + 2, 6):
            x2 += xd
            y_max = int(sqrt(end-x2))
            n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1
            if not(n & 1):
                n -= n_diff
                n_diff -= 2
            for d in xrange((n_diff - 1) << 1, -1, -8):
                if n % 12 == 7:
                    m = n >> 1
                    sieve[m] = not sieve[m]
                n -= d
    
        x_max, y_min, x2, xd = int((2 + sqrt(4-8*(1-end)))/4), -1, 0, 3
        for x in xrange(1, x_max + 1):
            x2 += xd
            xd += 6
            if x2 >= end: y_min = (((int(ceil(sqrt(x2 - end))) - 1) << 1) - 2) << 1
            n, n_diff = ((x*x + x) << 1) - 1, (((x-1) << 1) - 2) << 1
            for d in xrange(n_diff, y_min, -8):
                if n % 12 == 11:
                    m = n >> 1
                    sieve[m] = not sieve[m]
                n += d
    
        primes = [2, 3]
        if end <= 3:
            return primes[:max(0,end-2)]
    
        for n in xrange(5 >> 1, (int(sqrt(end))+1) >> 1):
            if sieve[n]:
                primes.append((n << 1) + 1)
                aux = (n << 1) + 1
                aux *= aux
                for k in xrange(aux, end, 2 * aux):
                    sieve[k >> 1] = False
    
        s  = int(sqrt(end)) + 1
        if s  % 2 == 0:
            s += 1
        primes.extend([i for i in xrange(s, end, 2) if sieve[i >> 1]])
    
        return primes
    
    def ambi_sieve_plain(n):
        s = range(3, n, 2)
        for m in xrange(3, int(n**0.5)+1, 2): 
            if s[(m-3)/2]: 
                for t in xrange((m*m-3)/2,(n>>1)-1,m):
                    s[t]=0
        return [2]+[t for t in s if t>0]
    
    def sundaram3(max_n):
        # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/2073279#2073279
        numbers = range(3, max_n+1, 2)
        half = (max_n)//2
        initial = 4
    
        for step in xrange(3, max_n+1, 2):
            for i in xrange(initial, half, step):
                numbers[i-1] = 0
            initial += 2*(step+1)
    
            if initial > half:
                return [2] + filter(None, numbers)
    
    ################################################################################
    # Using Numpy:
    def ambi_sieve(n):
        # http://tommih.blogspot.com/2009/04/fast-prime-number-generator.html
        s = np.arange(3, n, 2)
        for m in xrange(3, int(n ** 0.5)+1, 2): 
            if s[(m-3)/2]: 
                s[(m*m-3)/2::m]=0
        return np.r_[2, s[s>0]]
    
    def primesfrom3to(n):
        # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
        """ Returns a array of primes, p < n """
        assert n>=2
        sieve = np.ones(n/2, dtype=np.bool)
        for i in xrange(3,int(n**0.5)+1,2):
            if sieve[i/2]:
                sieve[i*i/2::i] = False
        return np.r_[2, 2*np.nonzero(sieve)[0][1::]+1]    
    
    def primesfrom2to(n):
        # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
        """ Input n>=6, Returns a array of primes, 2 <= p < n """
        sieve = np.ones(n/3 + (n%6==2), dtype=np.bool)
        sieve[0] = False
        for i in xrange(int(n**0.5)/3+1):
            if sieve[i]:
                k=3*i+1|1
                sieve[      ((k*k)/3)      ::2*k] = False
                sieve[(k*k+4*k-2*k*(i&1))/3::2*k] = False
        return np.r_[2,3,((3*np.nonzero(sieve)[0]+1)|1)]
    
    if __name__=='__main__':
        import itertools
        import sys
    
        def test(f1,f2,num):
            print('Testing {f1} and {f2} return same results'.format(
                f1=f1.func_name,
                f2=f2.func_name))
            if not all([a==b for a,b in itertools.izip_longest(f1(num),f2(num))]):
                sys.exit("Error: %s(%s) != %s(%s)"%(f1.func_name,num,f2.func_name,num))
    
        n=1000000
        test(sieveOfAtkin,sieveOfEratosthenes,n)
        test(sieveOfAtkin,ambi_sieve,n)
        test(sieveOfAtkin,ambi_sieve_plain,n) 
        test(sieveOfAtkin,sundaram3,n)
        test(sieveOfAtkin,sieve_wheel_30,n)
        test(sieveOfAtkin,primesfrom3to,n)
        test(sieveOfAtkin,primesfrom2to,n)
        test(sieveOfAtkin,rwh_primes,n)
        test(sieveOfAtkin,rwh_primes1,n)         
        test(sieveOfAtkin,rwh_primes2,n)
    

    Running the script tests that all implementations give the same result.