I need to implement Single Scale retinex and multiscale retinex algorithm in C#,
I searched a bit but couldn't find any useful practice projects and artilces with code
As I understood correctly I should:
This code is not working correctly
public static Image<Bgr, byte> SingleScaleRetinex(this Image<Bgr, byte> img, int gaussianKernelSize, double sigma)
{
var radius = gaussianKernelSize / 2;
var kernelSize = 2 * radius + 1;
var ycc = img.Convert<Ycc, byte>();
var sum = 0f;
var gaussKernel = new float[kernelSize * kernelSize];
for (int i = -radius, k = 0; i <= radius; i++, k++)
{
for (int j = -radius; j <= radius; j++)
{
var val = (float)Math.Exp(-(i * i + j * j) / (sigma * sigma));
gaussKernel[k] = val;
sum += val;
}
}
for (int i = 0; i < gaussKernel.Length; i++)
gaussKernel[i] /= sum;
var gray = new Image<Gray, byte>(ycc.Size);
CvInvoke.cvSetImageCOI(ycc, 1);
CvInvoke.cvCopy(ycc, gray, IntPtr.Zero);
// Размеры изображения
var width = img.Width;
var height = img.Height;
var bmp = gray.Bitmap;
var bitmapData = bmp.LockBits(new Rectangle(Point.Empty, gray.Size), ImageLockMode.ReadWrite, PixelFormat.Format8bppIndexed);
unsafe
{
for (var y = 0; y < height; y++)
{
var row = (byte*)bitmapData.Scan0 + y * bitmapData.Stride;
for (var x = 0; x < width; x++)
{
var color = row + x;
float val = 0;
for (int i = -radius, k = 0; i <= radius; i++, k++)
{
var ii = y + i;
if (ii < 0) ii = 0; if (ii >= height) ii = height - 1;
var row2 = (byte*)bitmapData.Scan0 + ii * bitmapData.Stride;
for (int j = -radius; j <= radius; j++)
{
var jj = x + j;
if (jj < 0) jj = 0; if (jj >= width) jj = width - 1;
val += *(row2 + jj) * gaussKernel[k];
}
}
var newColor = 127.5 + 255 * Math.Log(*color / val);
if (newColor > 255)
newColor = 255;
else if (newColor < 0)
newColor = 0;
*color = (byte)newColor;
}
}
}
bmp.UnlockBits(bitmapData);
CvInvoke.cvCopy(gray, ycc, IntPtr.Zero);
CvInvoke.cvSetImageCOI(ycc, 0);
return ycc.Convert<Bgr, byte>();
}
Look at: http://www.fer.unizg.hr/ipg/resources/color_constancy
These algorithms are modifications of the Retinex algorithm (with speed improvement) although the author gave them funny names :)
There is a full source code (C++, but it is written very nicely).