I'm searching for algorithms/methods that are used to classify or differentiate between two outdoor environments. Given an image with vehicles, I need to be able to detect whether the vehicles are in a natural desert landscape, or whether they're in the city.
I've searched but can't seem to find relevant work on this. Perhaps because I'm new at computer vision, I'm using the wrong search terms.
Any ideas? Is there any work (or related) available in this direction?
Seemingly complex classifications similar to "civilization" vs "nature" might be able to be solved simply with the help of certain heuristics along with classification based on color. Like Gilevi said, city scenes are sure to contain many flat lines and right angles, while desert scenes are dominated by rolling dunes and so on.
To address this directly, you could use OpenCV's hough - lines algorithm on the images (tuned for this problem of course) and look at:
a) how many lines are fit to the image at a given threshold b) of the lines that are fit what is the expected angle between two of them; if the angles are uniformly distributed then chances are its nature, but if the angles are clumped up around multiples of pi/2 (more right angles and straight lines) then it is more likely to be a cityscape.