I'm using using scipy's least-squares optimization to fit an exponentially-modified gaussian distribution to a set of reaction time measurements. In general, it works well, but sometimes, the optimization goes off the rails and chooses a crazy value for a parameter -- the resulting plot clearly doesn't fit the data very well. In general, it looks like the problems arise from floating-point precision errors -- we head off into 0 or inf or nan-land.
I'm thinking of doing two things:
Combining the PDF and CDF fits sounds pretty straightforward; the scales of the error will even be generally the same. But getting the initial parameter fits in there: I'm not quite sure if it's even a good idea -- but if it is:
Are these even the right questions to be asking? Are there generally-regarded "correct" answers, or is "try some stuff until you find something that seems to work" a good approach?
As requested, here's a dataset for which this process isn't working very well. I know there are only a few samples and that the data don't fit the distribution well; I'm still hoping against hope that I can get a "reasonable-looking" result from optimization.
array([ 450., 560., 692., 730., 758., 723., 486., 596., 716.,
695., 757., 522., 535., 419., 478., 666., 637., 569.,
859., 883., 551., 652., 378., 801., 718., 479., 544.])
I had a bunch of problems getting my MLE estimate to converge to a "reasonable" value, until I discovered this: If X contains at least one nan, np.sum(X) == nan
when X is a numpy array but not when X is a pandas Series. So the sum of the log-likelihood was doing stupid things when the parameters started to go out of bounds.
Added a np.asarray()
call and everything is great!
This should have been a comment but I run out of space.
I think a Maximum Likelihood fit is probably the most appropriate approach here. ML method is already implemented for many distributions in scipy.stats
. For example, you can find the MLE of normal distribution by calling scipy.stats.norm.fit
and find the MLE of exponential distribution in a similar way. Combining these two resulting MLE parameters should give you a pretty good starting parameter for Ex-Gaussian ML fit. In fact I would imaging most of your data is quite nicely Normally distributed. If that is the case, the ML parameter estimates for Normal distribution alone should give you a pretty good starting parameter.
Since Ex-Gaussian only has 3 parameters, I don't think a ML fit will be hard at all. If you could provide a dataset for which your current method doesn't work well, it will be easier to show a real example.
Alright, here you go:
>>> import scipy.special as sse
>>> import scipy.stats as sss
>>> import scipy.optimize as so
>>> from numpy import *
>>> def eg_pdf(p, x): #defines the PDF
m=p[0]
s=p[1]
l=p[2]
return 0.5*l*exp(0.5*l*(2*m+l*s*s-2*x))*sse.erfc((m+l*s*s-x)/(sqrt(2)*s))
>>> xo=array([ 450., 560., 692., 730., 758., 723., 486., 596., 716.,
695., 757., 522., 535., 419., 478., 666., 637., 569.,
859., 883., 551., 652., 378., 801., 718., 479., 544.])
>>> sss.norm.fit(xo) #get the starting parameter vector form the normal MLE
(624.22222222222217, 132.23977474531389)
>>> def llh(p, f, x): #defines the negative log-likelihood function
return -sum(log(f(p,x)))
>>> so.fmin(llh, array([624.22222222222217, 132.23977474531389, 1e-6]), (eg_pdf, xo)) #yeah, the data is not good
Warning: Maximum number of function evaluations has been exceeded.
array([ 6.14003407e+02, 1.31843250e+02, 9.79425845e-02])
>>> przt=so.fmin(llh, array([624.22222222222217, 132.23977474531389, 1e-6]), (eg_pdf, xo), maxfun=1000) #so, we increase the number of function call uplimit
Optimization terminated successfully.
Current function value: 170.195924
Iterations: 376
Function evaluations: 681
>>> llh(array([624.22222222222217, 132.23977474531389, 1e-6]), eg_pdf, xo)
400.02921290185645
>>> llh(przt, eg_pdf, xo) #quite an improvement over the initial guess
170.19592431051217
>>> przt
array([ 6.14007039e+02, 1.31844654e+02, 9.78934519e-02])
The optimizer used here (fmin
, or Nelder-Mead simplex algorithm) does not use any information from gradient and usually works much slower than the optimizer that does. It appears that the derivative of the negative log-likelihood function of Exponential Gaussian may be written in a close form easily. If so, optimizers that utilize gradient/derivative will be better and more efficient choice (such as fmin_bfgs
).
The other thing to consider is parameter constrains. By definition, sigma and lambda has to be positive for Exponential Gaussian. You can use a constrained optimizer (such as fmin_l_bfgs_b
). Alternatively, you can optimize for:
>>> def eg_pdf2(p, x): #defines the PDF
m=p[0]
s=exp(p[1])
l=exp(p[2])
return 0.5*l*exp(0.5*l*(2*m+l*s*s-2*x))*sse.erfc((m+l*s*s-x)/(sqrt(2)*s))
Due to the functional invariance property of MLE, the MLE of this function should be the same as same as the original eg_pdf
. There are other transformation that you can use, besides exp()
, to project (-inf, +inf)
to (0, +inf)
.
And you can also consider http://en.wikipedia.org/wiki/Lagrange_multiplier.