I already tried to prove that fun bubble_main
is ordered but no approach seems to work. Could someone here help me to prove the lemma is_ordered (bubble_main L)
please.
I just delete all my previous lemmas because none seems to help Isabelle find a proof. Here is my code/theory:
text{*check if the list is ordered ascendant*}
fun is_sorted :: "nat list ⇒ bool" where
"is_sorted (x1 # x2 # xs) = (x1 < x2 ∧ is_sorted (x2 # xs))" |
"is_sorted x = True"
fun bubble_once :: "nat list ⇒ nat list" where
"bubble_once (x1 # x2 # xs) = (if x1 < x2
then x1 # bubble_once (x2 # xs)
else x2 # bubble_once (x1 # xs))" |
"bubble_once xs = xs"
text{*calls fun bubble_once *}
fun bubble_all where
"bubble_all 0 L = L"|
"bubble_all (Suc n) L = burbuja_all n (bubble_once L)"
text{*main function *}
fun bubble_main where
"bubble_main L = bubble_main (length L) L"
text{*-----prove by induction-----*}
lemma "is_sorted (bubble_main L)"
apply (induction L)
apply auto
quickcheck
oops
First of all, I would repair your definitions. E.g., using your version
of is_sorted
is too strict in the sense, that [0,0] is not sorted. This
is also detected by quick check.
fun is_sorted :: "nat list ⇒ bool" where
"is_sorted (x1 # x2 # xs) = (x1 <= x2 ∧ is_sorted (x2 # xs))" |
"is_sorted x = True"
bubble_all
has to call itself recursively.
fun bubble_all where
"bubble_all 0 L = L"|
"bubble_all (Suc n) L = bubble_all n (bubble_once L)"
and bubble_main
has to invoke bubble_all
.
fun bubble_main where
"bubble_main L = bubble_all (length L) L"
Then there are several auxiliary lemmas required to prove the result.
Some I listed here, others are visible in the sorry
's.
lemma length_bubble_once[simp]: "length (bubble_once L) = length L"
by (induct rule: bubble_once.induct, auto)
lemma is_sorted_last: assumes "⋀ x. x ∈ set xs ⟹ x ≤ y"
and "is_sorted xs"
shows "is_sorted (xs @ [y])" sorry
And of course, the main algorithm is bubble_all
, so you should prove
the property for bubble_all
, not for bubble_main
inductively.
Moreover, an induction over the length of the list (or the number of iterations)
is advantageous here, since the list is changed by bubble_all
in the recursive call.
lemma bubble_all_sorted: "n ≥ length L ⟹ is_sorted (bubble_all n L)"
proof (induct n arbitrary: L)
case (0 L) thus ?case by auto
next
case (Suc n L)
show ?case
proof (cases "L = []")
case True
from Suc(1)[of L] True
show ?thesis by auto
next
case False
let ?BL = "bubble_once L"
from False have "length ?BL ≠ 0" by auto
hence "?BL ≠ []" by (cases "?BL", auto)
hence "?BL = butlast ?BL @ [last ?BL]" by auto
then obtain xs x where BL: "?BL = xs @ [x]" ..
from BL have x_large: "⋀ y. y ∈ set xs ⟹ y ≤ x" sorry
from Suc(2) have "length ?BL ≤ Suc n" by auto
with BL have "length xs ≤ n" by auto
from Suc(1)[OF this] have sorted: "is_sorted (bubble_all n xs)" .
from x_large have id: "bubble_all n (xs @ [x]) = bubble_all n xs @ [x]" sorry
show ?thesis unfolding bubble_all.simps BL id
proof (rule is_sorted_last[OF x_large sorted])
fix x
assume "x ∈ set (bubble_all n xs)"
thus "x ∈ set xs" sorry
qed
qed
qed
The final theorem is then easily achieved.
lemma "is_sorted (bubble_main L)"
using bubble_all_sorted by simp
I hope, this helps a bit to see the direction what is required.