Search code examples
pythonpandaspivot-table

define aggfunc for each values column in pandas pivot table


Was trying to generate a pivot table with multiple "values" columns. I know I can use aggfunc to aggregate values the way I want to, but what if I don't want to sum or avg both columns but instead I want sum of one column while mean of the other one. So is it possible to do so using pandas?

df = pd.DataFrame({
          'A' : ['one', 'one', 'two', 'three'] * 6,
          'B' : ['A', 'B', 'C'] * 8,
          'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
          'D' : np.random.randn(24),
          'E' : np.random.randn(24)
})

Now this will get a pivot table with sum:

pd.pivot_table(df, values=['D','E'], rows=['B'], aggfunc=np.sum)

And this for mean:

pd.pivot_table(df, values=['D','E'], rows=['B'], aggfunc=np.mean)

How can I get sum for D and mean for E?

Hope my question is clear enough.


Solution

  • You can concat two DataFrames:

    >>> df1 = pd.pivot_table(df, values=['D'], rows=['B'], aggfunc=np.sum)
    >>> df2 = pd.pivot_table(df, values=['E'], rows=['B'], aggfunc=np.mean)
    >>> pd.concat((df1, df2), axis=1)
              D         E
    B                    
    A  1.810847 -0.524178
    B  2.762190 -0.443031
    C  0.867519  0.078460
    

    or you can pass list of functions as aggfunc parameter and then reindex:

    >>> df3 = pd.pivot_table(df, values=['D','E'], rows=['B'], aggfunc=[np.sum, np.mean])
    >>> df3
            sum                mean          
              D         E         D         E
    B                                        
    A  1.810847 -4.193425  0.226356 -0.524178
    B  2.762190 -3.544245  0.345274 -0.443031
    C  0.867519  0.627677  0.108440  0.078460
    >>> df3 = df3.ix[:, [('sum', 'D'), ('mean','E')]]
    >>> df3.columns = ['D', 'E']
    >>> df3
              D         E
    B                    
    A  1.810847 -0.524178
    B  2.762190 -0.443031
    C  0.867519  0.078460
    

    Alghouth, it would be nice to have an option to defin aggfunc for each column individually. Don't know how it could be done, may be pass into aggfunc dict-like parameter, like {'D':np.mean, 'E':np.sum}.

    update Actually, in your case you can pivot by hand:

    >>> df.groupby('B').aggregate({'D':np.sum, 'E':np.mean})
              E         D
    B                    
    A -0.524178  1.810847
    B -0.443031  2.762190
    C  0.078460  0.867519