Following is my code for SICP exercise 1.29. The exercise asks us to implement
Simpson's Rule using higher order procedure sum
. It's supposed to be more
accurate than the original integral
procedure. But I don't know why it's not
the case in my code:
(define (simpson-integral f a b n)
(define h (/ (- b a) n))
(define (next x) (+ x (* 2 h)))
(* (/ h 3) (+ (f a)
(* 4 (sum f (+ a h) next (- b h)))
(* 2 (sum f (+ a (* 2 h)) next (- b (* 2 h))))
(f b))))
Some explanations of my code: As
h/3 * (y_{0} + 4*y_{1} + 2*y_{2} + 4*y_{3} + 2*y_{4} + ... + 2*y_{n-2} + 4*y_{n-1} + y_{n})
equals
h/3 * (y_{0}
+ 4 * (y_{1} + y_{3} + ... + y_{n-1})
+ 2 * (y_{2} + y_{4} + ... + y_{n-2})
+ y_{n})
I just use sum
to compute y_{1} + y_{3} + ... + y_{n-1}
and y_{2} +
y_{4} + ... + y_{n-2}
.
Complete code here:
#lang racket
(define (cube x) (* x x x))
(define (sum term a next b)
(if (> a b)
0
(+ (term a)
(sum term (next a) next b))))
(define (integral f a b dx)
(define (add-dx x) (+ x dx))
(* (sum f (+ a (/ dx 2.0)) add-dx b)
dx))
(define (simpson-integral f a b n)
(define h (/ (- b a) n))
(define (next x) (+ x (* 2 h)))
(* (/ h 3) (+ (f a)
(* 4 (sum f (+ a h) next (- b h)))
(* 2 (sum f (+ a (* 2 h)) next (- b (* 2 h))))
(f b))))
Some tests(The exact value should be 0.25):
> (integral cube 0 1 0.01)
0.24998750000000042
> (integral cube 0 1 0.001)
0.249999875000001
> (simpson-integral cube 0 1.0 100)
0.23078806666666699
> (simpson-integral cube 0 1.0 1000)
0.24800798800666748
> (simpson-integral cube 0 1.0 10000)
0.2499999999999509
In your solution the x-values are computed as follows:
h = (b-a)/n
x1 = a+1
x3 = x1 +2*h
x5 = x3 +2*h
...
This means rounding errors slowly accumulate.
It happens when (b-a)/n
is not representable as floating point.
If we instead compute xi
as a+ (i*(b-a))/n
you will get more accurate results.
This variant of your solution uses the above method to compute the xi
.
(define (simpson-integral3 f a b n)
(define h (/ (- b a) n))
(define (next i) (+ i 2))
(define (f* i) (f (+ a (/ (* i (- b a)) n))))
(* (/ h 3)
(+ (f a)
(* 4 (sum f* 1 next n))
(* 2 (sum f* 2 next (- n 1)))
(f b))))