Search code examples
javabashopennlpnamed-entity-recognition

Training Named Entity in OpenNLP


I want to train a corpus for Indian names:

class NameTraining
{
    public static void TrainNames() throws IOException 
    {
        Charset charset = Charset.forName("UTF-8");         
        FileReader fileReader = new FileReader("train.txt");
        ObjectStream fileStream = new PlainTextByLineStream(fileReader);
        ObjectStream sampleStream = new NameSampleDataStream(fileStream);
        TokenNameFinderModel model = NameFinderME.train("pt-br", "train", sampleStream, Collections.<String, Object>emptyMap());
        NameFinderME nfm = new NameFinderME(model); 
    }

    public static void main(String args[]) throws IOException
    {
        NameTraining det = new NameTraining();
        det.TrainNames();
    }
}

I compile this using the command:

javac -cp $(echo lib/*.jar | tr ' ' ':') NameTraining.java -Xlint:unchecked

However I get these error messages

NameTraining.java:35: warning: [unchecked] unchecked conversion
found   : opennlp.tools.util.ObjectStream
required: opennlp.tools.util.ObjectStream<java.lang.String>
        ObjectStream sampleStream = new NameSampleDataStream(fileStream);
                                                             ^
NameTraining.java:36: warning: [unchecked] unchecked conversion
found   : opennlp.tools.util.ObjectStream
required: opennlp.tools.util.ObjectStream<opennlp.tools.namefind.NameSample>
        TokenNameFinderModel model = NameFinderME.train("pt-br", "train", sampleStream, Collections.<String, Object>emptyMap());
                                                                          ^
2 warnings

I want to know two things

  1. Is the above code correct for training, and if yes, then how do I check the results after training?
  2. What do the warnings mean?

Solution

  • Hi I got a brief successful training data set

    public static void TrainNames() throws IOException
        {
            Charset charset = Charset.forName("UTF-8");
            ObjectStream<String> lineStream =new PlainTextByLineStream(new FileInputStream("/home/yogi.singh/dev/java/nlp/data/en-ner-person.train"), charset);
            ObjectStream<NameSample> sampleStream = new NameSampleDataStream(lineStream);       
            //FileReader fileReader = new FileReader("train.txt");
            //ObjectStream fileStream = new PlainTextByLineStream(fileReader);
            //ObjectStream sampleStream = new NameSampleDataStream(fileStream);
            TokenNameFinderModel model = NameFinderME.train("en", "person", sampleStream, Collections.<String, Object>emptyMap());
            NameFinderME nfm = new NameFinderME(model);
            String sentence = "";
    
    
            BufferedReader br = new BufferedReader(new FileReader("/home/yogi.singh/dev/java/nlp/train.txt"));
            try
             {
                StringBuilder sb = new StringBuilder();
                String line = br.readLine();
    
                while (line != null)
                {
                    sb.append(line);
                    sb.append('\n');
                    line = br.readLine();
                }
                sentence = sb.toString();
             } 
            finally
            {
                br.close();
            }
    
            InputStream is1 = new FileInputStream("/home/yogi.singh/dev/java/nlp/data/en-token.bin");
            TokenizerModel model1 = new TokenizerModel(is1);
    
            Tokenizer tokenizer = new TokenizerME(model1);
    
            String tokens[] = tokenizer.tokenize(sentence);
    
            for (String a : tokens)
                System.out.println(a);
    
            Span nameSpans[] = nfm.find(tokens);
            for(Span s: nameSpans)
            {
                System.out.print(s.toString());
                System.out.print(" ");
                for(int index = s.getStart();index < s.getEnd();index++)
                {
                    System.out.print(tokens[index] + " ");
                }
                System.out.println(" ");
            }
        }