Search code examples
crcorrelationsnowfall

Fast correlation in R using C and parallelization


My project for today was to write a fast correlation routine in R using the basic skillset I have. I have to find the correlation between almost 400 variables each having almost a million observations (i.e. a matrix of size p=1MM rows & n=400 cols).

R's native correlation function takes almost 2 mins for 1MM rows and 200 observations per variable. I have not run for 400 observations per column, but my guess is it will take almost 8 mins. I have less than 30 secs to finish it.

Hence, I want to do do things.

1 - write a simple correlation function in C and apply it in blocks parallely (see below).

2 - The blocks - split the correlation matrix in three blocks (top left square of size K*K, bottom right square of size (p-K)(p-K), and top right rectangular matrix of size K(p-K)). This covers all cells in the correlation matrix corr since I only need the upper triangle.

3 - run the C function via a .C call parallely using snowfall.

n = 100
p = 10
X = matrix(rnorm(n*p), nrow=n, ncol=p)
corr = matrix(0, nrow=p, ncol=p)

# calculation of column-wise mean and sd to pass to corr function
mu = colMeans(X)
sd = sapply(1:dim(X)[2], function(x) sd(X[,x]))

# setting up submatrix row and column ranges
K = as.integer(p/2)

RowRange = list()
ColRange = list()
RowRange[[1]] = c(0, K)
ColRange[[1]] = c(0, K)

RowRange[[2]] = c(0, K)
ColRange[[2]] = c(K, p+1)

RowRange[[3]] = c(K, p+1)
ColRange[[3]] = c(K, p+1)

# METHOD 1. NOT PARALLEL
########################
# function to calculate correlation on submatrices
BigCorr <- function(x){
  Rows = RowRange[[x]]
  Cols = ColRange[[x]]    
  return(.C("rCorrelationWrapper2", as.matrix(X), as.integer(dim(X)), 
            as.double(mu), as.double(sd), 
            as.integer(Rows), as.integer(Cols), 
            as.matrix(corr)))
}

res = list()
for(i in 1:3){
  res[[i]] = BigCorr(i)
}

# METHOD 2
########################
BigCorr <- function(x){
    Rows = RowRange[[x]]
    Cols = ColRange[[x]]    
    dyn.load("./rCorrelation.so")
    return(.C("rCorrelationWrapper2", as.matrix(X), as.integer(dim(X)), 
          as.double(mu), as.double(sd), 
          as.integer(Rows), as.integer(Cols), 
          as.matrix(corr)))
}

# parallelization setup
NUM_CPU = 4
library('snowfall')
sfSetMaxCPUs() # maximum cpu processing
sfInit(parallel=TRUE,cpus=NUM_CPU) # init parallel procs
sfExport("X", "RowRange", "ColRange", "sd", "mu", "corr")  
res = sfLapply(1:3, BigCorr)
sfStop()  

Here is my problem:

for method 1, it works, but not the way I want it to. I believed, that when I pass the corr matrix, I am passing an address and C would be making changes at source.

# Output of METHOD 1
> res[[1]][[7]]
      [,1]      [,2]        [,3]       [,4]         [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1 0.1040506 -0.01003125 0.23716384 -0.088246793    0    0    0    0     0
 [2,]    0 1.0000000 -0.09795989 0.11274508  0.025754150    0    0    0    0     0
 [3,]    0 0.0000000  1.00000000 0.09221441  0.052923520    0    0    0    0     0
 [4,]    0 0.0000000  0.00000000 1.00000000 -0.000449975    0    0    0    0     0
 [5,]    0 0.0000000  0.00000000 0.00000000  1.000000000    0    0    0    0     0
 [6,]    0 0.0000000  0.00000000 0.00000000  0.000000000    0    0    0    0     0
 [7,]    0 0.0000000  0.00000000 0.00000000  0.000000000    0    0    0    0     0
 [8,]    0 0.0000000  0.00000000 0.00000000  0.000000000    0    0    0    0     0
 [9,]    0 0.0000000  0.00000000 0.00000000  0.000000000    0    0    0    0     0
[10,]    0 0.0000000  0.00000000 0.00000000  0.000000000    0    0    0    0     0
> res[[2]][[7]]
      [,1] [,2] [,3] [,4] [,5]        [,6]        [,7]        [,8]       [,9]       [,10]
 [1,]    0    0    0    0    0 -0.02261175 -0.23398448 -0.02382690 -0.1447913 -0.09668318
 [2,]    0    0    0    0    0 -0.03439707  0.04580888  0.13229376  0.1354754 -0.03376527
 [3,]    0    0    0    0    0  0.10360907 -0.05490361 -0.01237932 -0.1657041  0.08123683
 [4,]    0    0    0    0    0  0.18259522 -0.23849323 -0.15928474  0.1648969 -0.05005328
 [5,]    0    0    0    0    0 -0.01012952 -0.03482429  0.14680301 -0.1112500  0.02801333
 [6,]    0    0    0    0    0  0.00000000  0.00000000  0.00000000  0.0000000  0.00000000
 [7,]    0    0    0    0    0  0.00000000  0.00000000  0.00000000  0.0000000  0.00000000
 [8,]    0    0    0    0    0  0.00000000  0.00000000  0.00000000  0.0000000  0.00000000
 [9,]    0    0    0    0    0  0.00000000  0.00000000  0.00000000  0.0000000  0.00000000
[10,]    0    0    0    0    0  0.00000000  0.00000000  0.00000000  0.0000000  0.00000000
> res[[3]][[7]]
      [,1] [,2] [,3] [,4] [,5] [,6]       [,7]        [,8]        [,9]       [,10]
 [1,]    0    0    0    0    0    0 0.00000000  0.00000000  0.00000000  0.00000000
 [2,]    0    0    0    0    0    0 0.00000000  0.00000000  0.00000000  0.00000000
 [3,]    0    0    0    0    0    0 0.00000000  0.00000000  0.00000000  0.00000000
 [4,]    0    0    0    0    0    0 0.00000000  0.00000000  0.00000000  0.00000000
 [5,]    0    0    0    0    0    0 0.00000000  0.00000000  0.00000000  0.00000000
 [6,]    0    0    0    0    0    1 0.03234195 -0.03488812 -0.18570151  0.14064640
 [7,]    0    0    0    0    0    0 1.00000000  0.03449697 -0.06765511 -0.15057244
 [8,]    0    0    0    0    0    0 0.00000000  1.00000000 -0.03426464  0.10030619
 [9,]    0    0    0    0    0    0 0.00000000  0.00000000  1.00000000 -0.08720512
[10,]    0    0    0    0    0    0 0.00000000  0.00000000  0.00000000  1.00000000

But the original corr matrix remains unchanged:

> corr
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    0    0    0    0    0    0    0    0    0     0
 [2,]    0    0    0    0    0    0    0    0    0     0
 [3,]    0    0    0    0    0    0    0    0    0     0
 [4,]    0    0    0    0    0    0    0    0    0     0
 [5,]    0    0    0    0    0    0    0    0    0     0
 [6,]    0    0    0    0    0    0    0    0    0     0
 [7,]    0    0    0    0    0    0    0    0    0     0
 [8,]    0    0    0    0    0    0    0    0    0     0
 [9,]    0    0    0    0    0    0    0    0    0     0
[10,]    0    0    0    0    0    0    0    0    0     0

Question #1: Is there any way to ensure that the C function changes values of corr at source? I can still merge these three to create an upper triangular correlation matrix, but I wanted to know if change at source is possible. Note: this does not help me accomplish fast correlation since I am merely running a loop.

Question #2: For METHOD 2, how do I load the shared object to each core for parallel jobs on each core at the init step (and not how I have done it)?

Question #3: What does this error mean? I need some pointers, and I would love to debug it myself.

Question #4: Is there a fast way of calculating correlation over matrices 1MM by 400, in less then 30 secs?

When I run METHOD 2, I get the following error:

R(6107) malloc: *** error for object 0x100664df8: incorrect checksum for freed object - object was probably modified after being freed.
*** set a breakpoint in malloc_error_break to debug
Error in unserialize(node$con) : error reading from connection

Attached below is my plain vanilla C code for correlation:

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <stddef.h>
#include <R.h> // to show errors in R


double calcMean (double *x, int n);
double calcStdev (double *x, double mu, int n);
double calcCov(double *x, double *y, int n, double xmu, double ymu);        

void rCorrelationWrapper2 ( double *X, int *dim, double *mu, double *sd, int *RowRange, int *ColRange, double *corr) {

    int i, j, n = dim[0], p = dim[1];
    int RowStart = RowRange[0], RowEnd = RowRange[1], ColStart = ColRange[0], ColEnd = ColRange[1];
    double xyCov;

    Rprintf("\n p: %d, %d <= row < %d, %d <= col < %d", p, RowStart, RowEnd, ColStart, ColEnd);

    if(RowStart==ColStart && RowEnd==ColEnd){
        for(i=RowStart; i<RowEnd; i++){
            for(j=i; j<ColEnd; j++){
                Rprintf("\n i: %d, j: %d, p: %d", i, j, p);
                xyCov = calcCov(X + i*n, X + j*n, n, mu[i], mu[j]);
                *(corr + j*p + i) = xyCov/(sd[i]*sd[j]);
            }
        }
    } else {
        for(i=RowStart; i<RowEnd; i++){
            for (j=ColStart; j<ColEnd; j++){
                xyCov = calcCov(X + i*n, X + j*n, n, mu[i], mu[j]);
                *(corr + j*p + i) = xyCov/(sd[i]*sd[j]);
            }
        }
    }
}


// function to calculate mean

double calcMean (double *x, int n){
    double s = 0;
    int i;
    for(i=0; i<n; i++){     
        s = s + *(x+i);
    }
    return(s/n);
}

// function to calculate standard devation

double calcStdev (double *x, double mu, int n){
    double t, sd = 0;
    int i;

    for (i=0; i<n; i++){
        t = *(x + i) - mu;
        sd = sd + t*t;
    }    
    return(sqrt(sd/(n-1)));
}


// function to calculate covariance

double calcCov(double *x, double *y, int n, double xmu, double ymu){
    double s = 0;
    int i;

    for(i=0; i<n; i++){
        s = s + (*(x+i)-xmu)*(*(y+i)-ymu);
    }
    return(s/(n-1));
}

Solution

  • Using a fast BLAS (via Revolution R or Goto BLAS) you can calculate all these correlations fast in R without writing any C code. On my first generation Intel i7 PC it takes 16 seconds:

    n = 400;
    m = 1e6;
    
    # Generate data
    mat = matrix(runif(m*n),n,m);
    # Start timer
    tic = proc.time();
    # Center each variable
    mat = mat - rowMeans(mat);
    # Standardize each variable
    mat = mat / sqrt(rowSums(mat^2));   
    # Calculate correlations
    cr = tcrossprod(mat);
    # Stop timer
    toc = proc.time();
    
    # Show the results and the time
    show(cr[1:4,1:4]);
    show(toc-tic)
    

    The R code above reports the following timing:

     user  system elapsed 
    31.82    1.98   15.74 
    

    I use this approach in my MatrixEQTL package.
    http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/

    More information about various BLAS options for R is available here:
    http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/runit.html#large