I'm trying to do a K-means clustering of some dataset using sklearn. The problem is that one of the dimensions is hour-of-day: a number from 0-23 and so the distance algorithm then thinks that 0 is very far from 23, because in absolute terms it is. In reality and for my purposes, hour 0 is very close to hour 23. Is there a way to make the distance algorithm do some form of wrap-around so it computes the more 'real' time difference. I'm doing something simple, similar to the following:
from sklearn.cluster import KMeans
clusters = KMeans(n_clusters = 2)
data = vstack(data)
fit = clusters.fit(data)
classes = fit.predict(data)
data
elements looks something like [22, 418, 192]
where the first element is the hour.
Any ideas?
K-means is not a distance-based algorithm.
K-means minimizes the Within-Cluster-Sum-of-Squares, which is a kind of variance (it's roughly the weighted average variance of all clusters, where each object and dimension is given the same weight).
In order for Lloyds algorithm to converge you need to have both steps optimize the same function:
Now the "mean" function is a least-squares estimator. I.e. choosing the mean in step 2 is optimal for the WCSS objective. Assigning objects by least-squares deviation (= squared Euclidean distance, monotone to Euclidean distance) in step 1 also yields guaranteed convergence. The mean is exactly where your wrap-around idea would fall apart.
If you plug in a random other distance function as suggested by @elyase k-means might no longer converge.
There are various solutions to this:
sin(hour / 12 * pi), cos(hour / 12 * pi)
which may be okay for SSQ.