Search code examples
pythonarrayspandasdataframecalculated-columns

Create new columns and fill with calculated values from same dataframe


Here is a simplified example of my df:

ds = pd.DataFrame(np.abs(randn(3, 4)), index=[1,2,3], columns=['A','B','C','D'])
ds['sum'] = ds.sum(axis=1)

which looks like

      A         B         C         D       sum
1  0.095389  0.556978  1.646888  1.959295  4.258550
2  1.076190  2.668270  0.825116  1.477040  6.046616
3  0.245034  1.066285  0.967124  0.791606  3.070049

I would like to create 4 new columns and calculate the percentage value from the total (sum) in every row. So first value in the first new column should be (0.095389/4.258550), first value in the second new column (0.556978/4.258550)...and so on.


Solution

  • You can do this easily manually for each column like this:

    df['A_perc'] = df['A']/df['sum']
    

    If you want to do this in one step for all columns, you can use the div method (http://pandas.pydata.org/pandas-docs/stable/basics.html#matching-broadcasting-behavior):

    ds.div(ds['sum'], axis=0)
    

    And if you want this in one step added to the same dataframe:

    >>> ds.join(ds.div(ds['sum'], axis=0), rsuffix='_perc')
              A         B         C         D       sum    A_perc    B_perc  \
    1  0.151722  0.935917  1.033526  0.941962  3.063127  0.049532  0.305543   
    2  0.033761  1.087302  1.110695  1.401260  3.633017  0.009293  0.299283   
    3  0.761368  0.484268  0.026837  1.276130  2.548603  0.298739  0.190013   
    
         C_perc    D_perc  sum_perc  
    1  0.337409  0.307517         1  
    2  0.305722  0.385701         1  
    3  0.010530  0.500718         1