Search code examples
ropenairrose-plot

Removing default title from wind rose in 'openair' package


I have created a wind rose using the package 'openair', for water current and direction data. However, a default title is applied to the plot "Frequency of counts by wind direction (%)" which is not applicable to water current data. I cannot remove the title - can anyone help?

 windRose(Wind, ws = "ws", wd = "wd", ws2 = NA, wd2 =NA, 
ws.int = 20, angle = 10, type = "default", cols ="increment", 
grid.line = NULL, width = 0.5, seg = NULL,
auto.text = TRUE, breaks = 5, offset = 10, paddle =FALSE, 
key.header = "Current Speed", key.footer = "(cm/s)",
key.position = "right", key = TRUE, dig.lab = 3,
statistic = "prop.count", pollutant = NULL, annotate =
TRUE, border = NA, na.action=NULL)

Thanks!


Solution

  • The great thing about a lot of R functions is you can type their name to see the source, in many cases. So here you could type windRose, and edit the required label as below:

    windRose.2 <- function (mydata, ws = "ws", wd = "wd", ws2 = NA, wd2 = NA, ws.int = 2, 
        angle = 30, type = "default", cols = "default", grid.line = NULL, 
        width = 1, seg = NULL, auto.text = TRUE, breaks = 4, offset = 10, 
        paddle = TRUE, key.header = NULL, key.footer = "(m/s)", key.position = "bottom", 
        key = TRUE, dig.lab = 5, statistic = "prop.count", pollutant = NULL, 
        annotate = TRUE, border = NA, ...) 
    {
        if (is.null(seg)) 
            seg <- 0.9
        if (length(cols) == 1 && cols == "greyscale") {
            trellis.par.set(list(strip.background = list(col = "white")))
            calm.col <- "black"
        }
        else {
            calm.col <- "forestgreen"
        }
        current.strip <- trellis.par.get("strip.background")
        on.exit(trellis.par.set("strip.background", current.strip))
        if (360/angle != round(360/angle)) {
            warning("In windRose(...):\n  angle will produce some spoke overlap", 
                "\n  suggest one of: 5, 6, 8, 9, 10, 12, 15, 30, 45, etc.", 
                call. = FALSE)
        }
        if (angle < 3) {
            warning("In windRose(...):\n  angle too small", "\n  enforcing 'angle = 3'", 
                call. = FALSE)
            angle <- 3
        }
        extra.args <- list(...)
        extra.args$xlab <- if ("xlab" %in% names(extra.args)) 
            quickText(extra.args$xlab, auto.text)
        else quickText("", auto.text)
        extra.args$ylab <- if ("ylab" %in% names(extra.args)) 
            quickText(extra.args$ylab, auto.text)
        else quickText("", auto.text)
        extra.args$main <- if ("main" %in% names(extra.args)) 
            quickText(extra.args$main, auto.text)
        else quickText("", auto.text)
        if (is.character(statistic)) {
            ok.stat <- c("prop.count", "prop.mean", "abs.count", 
                "frequency")
            if (!is.character(statistic) || !statistic[1] %in% ok.stat) {
                warning("In windRose(...):\n  statistic unrecognised", 
                    "\n  enforcing statistic = 'prop.count'", call. = FALSE)
                statistic <- "prop.count"
            }
            if (statistic == "prop.count") {
                stat.fun <- length
                stat.unit <- "%"
                stat.scale <- "all"
                stat.lab <- ""
                stat.fun2 <- function(x) signif(mean(x, na.rm = TRUE), 
                    3)
                stat.lab2 <- "mean"
                stat.labcalm <- function(x) round(x, 1)
            }
            if (statistic == "prop.mean") {
                stat.fun <- function(x) sum(x, na.rm = TRUE)
                stat.unit <- "%"
                stat.scale <- "panel"
                stat.lab <- "Proportion contribution to the mean (%)"
                stat.fun2 <- function(x) signif(mean(x, na.rm = TRUE), 
                    3)
                stat.lab2 <- "mean"
                stat.labcalm <- function(x) round(x, 1)
            }
            if (statistic == "abs.count" | statistic == "frequency") {
                stat.fun <- length
                stat.unit <- ""
                stat.scale <- "none"
                stat.lab <- "Count by wind direction"
                stat.fun2 <- function(x) round(length(x), 0)
                stat.lab2 <- "count"
                stat.labcalm <- function(x) round(x, 0)
            }
        }
        if (is.list(statistic)) {
            stat.fun <- statistic$fun
            stat.unit <- statistic$unit
            stat.scale <- statistic$scale
            stat.lab <- statistic$lab
            stat.fun2 <- statistic$fun2
            stat.lab2 <- statistic$lab2
            stat.labcalm <- statistic$labcalm
        }
        vars <- c(wd, ws)
        diff <- FALSE
        rm.neg <- TRUE
        if (!is.na(ws2) & !is.na(wd2)) {
            vars <- c(vars, ws2, wd2)
            diff <- TRUE
            rm.neg <- FALSE
            mydata$ws <- mydata[, ws2] - mydata[, ws]
            mydata$wd <- mydata[, wd2] - mydata[, wd]
            id <- which(mydata$wd < 0)
            if (length(id) > 0) 
                mydata$wd[id] <- mydata$wd[id] + 360
            pollutant <- "ws"
            key.footer <- "ws"
            wd <- "wd"
            ws <- "ws"
            vars <- c("ws", "wd")
            if (missing(angle)) 
                angle <- 10
            if (missing(offset)) 
                offset <- 20
            if (is.na(breaks[1])) {
                max.br <- max(ceiling(abs(c(min(mydata$ws, na.rm = TRUE), 
                    max(mydata$ws, na.rm = TRUE)))))
                breaks <- c(-1 * max.br, 0, max.br)
            }
            if (missing(cols)) 
                cols <- c("lightskyblue", "tomato")
            seg <- 1
        }
        if (any(type %in% openair:::dateTypes)) 
            vars <- c(vars, "date")
        if (!is.null(pollutant)) 
            vars <- c(vars, pollutant)
        mydata <- openair:::checkPrep(mydata, vars, type, remove.calm = FALSE, 
            remove.neg = rm.neg)
        mydata <- na.omit(mydata)
        if (is.null(pollutant)) 
            pollutant <- ws
        mydata$x <- mydata[, pollutant]
        mydata[, wd] <- angle * ceiling(mydata[, wd]/angle - 0.5)
        mydata[, wd][mydata[, wd] == 0] <- 360
        mydata[, wd][mydata[, ws] == 0] <- -999
        if (length(breaks) == 1) 
            breaks <- 0:(breaks - 1) * ws.int
        if (max(breaks) < max(mydata$x, na.rm = TRUE)) 
            breaks <- c(breaks, max(mydata$x, na.rm = TRUE))
        if (min(breaks) > min(mydata$x, na.rm = TRUE)) 
            warning("Some values are below minimum break.")
        breaks <- unique(breaks)
        mydata$x <- cut(mydata$x, breaks = breaks, include.lowest = FALSE, 
            dig.lab = dig.lab)
        theLabels <- gsub("[(]|[)]|[[]|[]]", "", levels(mydata$x))
        theLabels <- gsub("[,]", " to ", theLabels)
        prepare.grid <- function(mydata) {
            if (all(is.na(mydata$x))) 
                return()
            levels(mydata$x) <- c(paste("x", 1:length(theLabels), 
                sep = ""))
            all <- stat.fun(mydata[, wd])
            calm <- mydata[mydata[, wd] == -999, ][, pollutant]
            mydata <- mydata[mydata[, wd] != -999, ]
            calm <- stat.fun(calm)
            weights <- tapply(mydata[, pollutant], list(mydata[, 
                wd], mydata$x), stat.fun)
            if (stat.scale == "all") {
                calm <- calm/all
                weights <- weights/all
            }
            if (stat.scale == "panel") {
                temp <- stat.fun(stat.fun(weights)) + calm
                calm <- calm/temp
                weights <- weights/temp
            }
            weights[is.na(weights)] <- 0
            weights <- t(apply(weights, 1, cumsum))
            if (stat.scale == "all" | stat.scale == "panel") {
                weights <- weights * 100
                calm <- calm * 100
            }
            panel.fun <- stat.fun2(mydata[, pollutant])
            u <- mean(sin(2 * pi * mydata[, wd]/360))
            v <- mean(cos(2 * pi * mydata[, wd]/360))
            mean.wd <- atan2(u, v) * 360/2/pi
            if (all(is.na(mean.wd))) {
                mean.wd <- NA
            }
            else {
                if (mean.wd < 0) 
                    mean.wd <- mean.wd + 360
                if (mean.wd > 180) 
                    mean.wd <- mean.wd - 360
            }
            weights <- cbind(data.frame(weights), wd = as.numeric(row.names(weights)), 
                calm = calm, panel.fun = panel.fun, mean.wd = mean.wd)
            weights
        }
        if (paddle) {
            poly <- function(wd, len1, len2, width, colour, x.off = 0, 
                y.off = 0) {
                theta <- wd * pi/180
                len1 <- len1 + off.set
                len2 <- len2 + off.set
                x1 <- len1 * sin(theta) - width * cos(theta) + x.off
                x2 <- len1 * sin(theta) + width * cos(theta) + x.off
                x3 <- len2 * sin(theta) - width * cos(theta) + x.off
                x4 <- len2 * sin(theta) + width * cos(theta) + x.off
                y1 <- len1 * cos(theta) + width * sin(theta) + y.off
                y2 <- len1 * cos(theta) - width * sin(theta) + y.off
                y3 <- len2 * cos(theta) + width * sin(theta) + y.off
                y4 <- len2 * cos(theta) - width * sin(theta) + y.off
                lpolygon(c(x1, x2, x4, x3), c(y1, y2, y4, y3), col = colour, 
                    border = border)
            }
        }
        else {
            poly <- function(wd, len1, len2, width, colour, x.off = 0, 
                y.off = 0) {
                len1 <- len1 + off.set
                len2 <- len2 + off.set
                theta <- seq((wd - seg * angle/2), (wd + seg * angle/2), 
                    length.out = (angle - 2) * 10)
                theta <- ifelse(theta < 1, 360 - theta, theta)
                theta <- theta * pi/180
                x1 <- len1 * sin(theta) + x.off
                x2 <- rev(len2 * sin(theta) + x.off)
                y1 <- len1 * cos(theta) + x.off
                y2 <- rev(len2 * cos(theta) + x.off)
                lpolygon(c(x1, x2), c(y1, y2), col = colour, border = border)
            }
        }
        mydata <- cutData(mydata, type, ...)
        results.grid <- ddply(mydata, type, prepare.grid)
        results.grid$calm <- stat.labcalm(results.grid$calm)
        results.grid$mean.wd <- stat.labcalm(results.grid$mean.wd)
        strip.dat <- openair:::strip.fun(results.grid, type, auto.text)
        strip <- strip.dat[[1]]
        strip.left <- strip.dat[[2]]
        pol.name <- strip.dat[[3]]
        if (length(theLabels) < length(cols)) {
            col <- cols[1:length(theLabels)]
        }
        else {
            col <- openColours(cols, length(theLabels))
        }
        max.freq <- max(results.grid[, (length(type) + 1):(length(theLabels) + 
            length(type))], na.rm = TRUE)
        off.set <- max.freq * (offset/100)
        box.widths <- seq(0.002^0.25, 0.016^0.25, length.out = length(theLabels))^4
        box.widths <- box.widths * max.freq * angle/5
        legend <- list(col = col, space = key.position, auto.text = auto.text, 
            labels = theLabels, footer = key.footer, header = key.header, 
            height = 0.6, width = 1.5, fit = "scale", plot.style = if (paddle) "paddle" else "other")
        legend <- openair:::makeOpenKeyLegend(key, legend, "windRose")
        temp <- paste(type, collapse = "+")
        myform <- formula(paste("x1 ~ wd | ", temp, sep = ""))
        mymax <- 2 * max.freq
        myby <- if (is.null(grid.line)) 
            pretty(c(0, mymax), 10)[2]
        else grid.line
        if (myby/mymax > 0.9) 
            myby <- mymax * 0.9
        xyplot.args <- list(x = myform, xlim = 1.03 * c(-max.freq - 
            off.set, max.freq + off.set), ylim = 1.03 * c(-max.freq - 
            off.set, max.freq + off.set), data = results.grid, type = "n", 
            sub = stat.lab, strip = strip, strip.left = strip.left, 
            as.table = TRUE, aspect = 1, par.strip.text = list(cex = 0.8), 
            scales = list(draw = FALSE), panel = function(x, y, subscripts, 
                ...) {
                panel.xyplot(x, y, ...)
                angles <- seq(0, 2 * pi, length = 360)
                sapply(seq(off.set, mymax, by = myby), function(x) llines(x * 
                    sin(angles), x * cos(angles), col = "grey85", 
                    lwd = 1))
                subdata <- results.grid[subscripts, ]
                upper <- max.freq + off.set
                larrows(-upper, 0, upper, 0, code = 3, length = 0.1)
                larrows(0, -upper, 0, upper, code = 3, length = 0.1)
                ltext(upper * -1 * 0.95, 0.07 * upper, "W", cex = 0.7)
                ltext(0.07 * upper, upper * -1 * 0.95, "S", cex = 0.7)
                ltext(0.07 * upper, upper * 0.95, "N", cex = 0.7)
                ltext(upper * 0.95, 0.07 * upper, "E", cex = 0.7)
                if (nrow(subdata) > 0) {
                    for (i in 1:nrow(subdata)) {
                      with(subdata, {
                        for (j in 1:length(theLabels)) {
                          if (j == 1) {
                            temp <- "poly(wd[i], 0, x1[i], width * box.widths[1], col[1])"
                          } else {
                            temp <- paste("poly(wd[i], x", j - 1, 
                              "[i], x", j, "[i], width * box.widths[", 
                              j, "], col[", j, "])", sep = "")
                          }
                          eval(parse(text = temp))
                        }
                      })
                    }
                }
                ltext(seq((myby + off.set), mymax, myby) * sin(pi/4), 
                    seq((myby + off.set), mymax, myby) * cos(pi/4), 
                    paste(seq(myby, mymax, by = myby), stat.unit, 
                      sep = ""), cex = 0.7)
                if (annotate) if (statistic != "prop.mean") {
                    if (!diff) {
                      ltext(max.freq + off.set, -max.freq - off.set, 
                        label = paste(stat.lab2, " = ", subdata$panel.fun[1], 
                          "\ncalm = ", subdata$calm[1], stat.unit, 
                          sep = ""), adj = c(1, 0), cex = 0.7, col = calm.col)
                    }
                    if (diff) {
                      ltext(max.freq + off.set, -max.freq - off.set, 
                        label = paste("mean ws = ", round(subdata$panel.fun[1], 
                          1), "\nmean wd = ", round(subdata$mean.wd[1], 
                          1), sep = ""), adj = c(1, 0), cex = 0.7, 
                        col = calm.col)
                    }
                } else {
                    ltext(max.freq + off.set, -max.freq - off.set, 
                      label = paste(stat.lab2, " = ", subdata$panel.fun[1], 
                        stat.unit, sep = ""), adj = c(1, 0), cex = 0.7, 
                      col = calm.col)
                }
            }, legend = legend)
        xyplot.args <- openair:::listUpdate(xyplot.args, extra.args)
        plt <- do.call(xyplot, xyplot.args)
        if (length(type) == 1) 
            plot(plt)
        else plot(useOuterStrips(plt, strip = strip, strip.left = strip.left))
        newdata <- results.grid
        output <- list(plot = plt, data = newdata, call = match.call())
        class(output) <- "openair"
        invisible(output)
    }
    

    Here I've copied the entire source, and made a new function, windRose.2 with the only difference being stat.lab <- "Frequency of counts by wind direction (%)" is now stat.lab <- "".