I am struggling with such task: I need to discretize values in a column from data frame, with bins definition based on value in other column.
For a minimal working example, lets define a simple dataframe:
import pandas as pd
df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,'B' : np.random.randn(12)})
The dataframe looks like this:
A B
0 one 2.5772143847077427
1 one -0.6394141654096013
2 two 0.964652049995486
3 three -0.3922889559403503
4 one 1.6903991754896424
5 one 0.5741442025742018
6 two 0.6300564981683544
7 three 0.9403680915507433
8 one 0.7044433078166983
9 one -0.1695006646595688
10 two 0.06376190217285167
11 three 0.277540580579127
Now I would like to introduce column C
, which will contain a bin label, with different bins for each of values in column A
, i.e.:
(-10,-1,0,1,10)
for A == 'one'
, (-100,0,100)
for A == 'two'
, (-999,0,1,2,3)
for A == 'three'
.A desired output is:
A B C
0 one 2.5772143847077427 (1, 10]
1 one -0.6394141654096013 (-1, 0]
2 two 0.964652049995486 (0, 100]
3 three -0.3922889559403503 (-999, 0]
4 one 1.6903991754896424 (1, 10]
5 one 0.5741442025742018 (0, 1]
6 two 0.6300564981683544 (0, 100]
7 three 0.9403680915507433 (0, 1]
8 one 0.7044433078166983 (0, 1]
9 one -0.1695006646595688 (-1, 0]
10 two 0.06376190217285167 (0, 100]
11 three 0.277540580579127 (0, 1]
I have tried using pd.cut
or np.digitize
with different combinations of map
, apply
, but without success.
Currently I am achieving the result by splitting the frame and applying pd.cut
to each subset separately, and then merging to get the frame back, like this:
values_in_column_A = df['A'].unique().tolist()
bins = {'one':(-10,-1,0,1,10),'two':(-100,0,100),'three':(-999,0,1,2,3)}
def binnize(df):
subdf = []
for i in range(len(values_in_column_A)):
subdf.append(df[df['A'] == values_in_column_A[i]])
subdf[i]['C'] = pd.cut(subdf[i]['B'],bins[values_in_column_A[i]])
return pd.concat(subdf)
This works, but I do not think it is elegant enough, I also anticipate some speed or memory problems in production, when I will have frames with millions of rows. Speaking straight, I guess this could be done better.
I wolud appreciate any help or ideas...
Does this solves your problem?
df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
'B' : np.random.randn(12)})
bins = {'one': (-10,-1,0,1,10), 'two':(-100,0,100), 'three':(-999,0,1,2,3)}
def func(row):
return pd.cut([row['B']], bins=bins[row['A']])[0]
df['C'] = df.apply(func, axis=1)
This returns a DataFrame:
A B C
0 one 1.440957 (1, 10]
1 one 0.394580 (0, 1]
2 two -0.039619 (-100, 0]
3 three -0.500325 (-999, 0]
4 one 0.497256 (0, 1]
5 one 0.342222 (0, 1]
6 two -0.968390 (-100, 0]
7 three -0.772321 (-999, 0]
8 one 0.803178 (0, 1]
9 one 0.201513 (0, 1]
10 two 1.178546 (0, 100]
11 three -0.149662 (-999, 0]
Faster version of binnize:
def binize2(df):
df['C'] = ''
for key, values in bins.items():
mask = df['A'] == key
df.loc[mask, 'C'] = pd.cut(df.loc[mask, 'B'], bins=values)
%%timeit
df3 = binnize(df1)
10 loops, best of 3: 56.2 ms per loop
%%timeit
binize2(df2)
100 loops, best of 3: 6.64 ms per loop
This is probably due to the fact that it changes the DataFrame inplace and doesn't create a new one.