Can someone please help explain what this means.
Background: 'network' is a class and represents a Neural Network object, it's constructor requires several inputs such as; nodes, inputs, outputs, num_functions etc. However, the python implementation I'm using as a reference uses a dictionary to load these parameters into the constructor (I believe that is whats going on). Can anyone help explain how this works network(**config)? Ps. I'm converting this to Java.
The constructor for the network class looks like this:
public network(int _graph_length, int _input_length, int _output_length, int _max_arity, int _function_length){
The dictionaries do this:
output is a dictionary used to store data.
config is a dictionary uses to load parameters for the NN.
And the code I don't understand is:
//Output data reset:
output.put("skipped", 0);
output.put("estimated", 0);
//if single mutation method:
if (config.get("speed") == "single"){
network.mutate = network.one_active_mutation;
}
parent = network(**config);
yield parent;
while true:
//code to evolve networks here!
network(**config)
will unpack the dictionary config
and use the key value pairs in that dictionary as arguments to network
.
For example, these will all make the same call to func
:
def func(foo, bar):
print foo, bar
d = {'foo': 'value1', 'bar': 'value2'}
func(**d)
func(**{'bar': 'value2', 'foo': 'value1'})
func(bar='value2', foo='value1')
func('value1', 'value2')