Search code examples
carbitrary-precision

Looking for Ansi C89 arbitrary precision math library


I wrote an Ansi C compiler for a friend's custom 16-bit stack-based CPU several years ago but I never got around to implementing all the data types. Now I would like to finish the job so I'm wondering if there are any math libraries out there that I can use to fill the gaps. I can handle 16-bit integer data types since they are native to the CPU and therefore I have all the math routines (ie. +, -, *, /, %) done for them. However, since his CPU does not handle floating point then I have to implement floats/doubles myself. I also have to implement the 8-bit and 32-bit data types (bother integer and floats/doubles). I'm pretty sure this has been done and redone many times and since I'm not particularly looking forward to recreating the wheel I would appreciate it if someone would point me at a library that can help me out.

Now I was looking at GMP but it seems to be overkill (library must be absolutely huge, not sure my custom compiler would be able to handle it) and it takes numbers in the form of strings which would be wasteful for obvious reasons. For example :

mpz_set_str(x, "7612058254738945", 10);
mpz_set_str(y, "9263591128439081", 10);
mpz_mul(result, x, y);

This seems simple enough, I like the api... but I would rather pass in an array rather than a string. For example, if I wanted to multiply two 32-bit longs together I would like to be able to pass it two arrays of size two where each array contains two 16-bit values that actually represent a 32-bit long and have the library place the output into an output array. If I needed floating point then I should be able to specify the precision as well.

This may seem like asking for too much but I'm asking in the hopes that someone has seen something like this.

Many thanks in advance!


Solution

  • Let's divide the answer.

    8-bit arithmetic

    This one is very easy. In fact, C already talks about this under the term "integer promotion". This means that if you have 8-bit data and you want to do an operation on them, you simply pad them with zero (or one if signed and negative) to make them 16-bit. Then you proceed with the normal 16-bit operation.

    32-bit arithmetic

    Note: so long as the standard is concerned, you don't really need to have 32-bit integers.

    This could be a bit tricky, but it is still not worth using a library for. For each operation, you would need to take a look at how you learned to do them in elementary school in base 10, and then do the same in base 216 for 2 digit numbers (each digit being one 16-bit integer). Once you understand the analogy with simple base 10 math (and hence the algorithms), you would need to implement them in assembly of your CPU.

    This basically means loading the most significant 16 bit on one register, and the least significant in another register. Then follow the algorithm for each operation and perform it. You would most likely need to get help from overflow and other flags.

    Floating point arithmetic

    Note: so long as the standard is concerned, you don't really need to conform to IEEE 754.

    There are various libraries already written for software emulated floating points. You may find this gcc wiki page interesting:

    GNU libc has a third implementation, soft-fp. (Variants of this are also used for Linux kernel math emulation on some targets.) soft-fp is used in glibc on PowerPC --without-fp to provide the same soft-float functions as in libgcc. It is also used on Alpha, SPARC and PowerPC to provide some ABI-specified floating-point functions (which in turn may get used by GCC); on PowerPC these are IEEE quad functions, not IBM long double ones.

    Performance measurements with EEMBC indicate that soft-fp (as speeded up somewhat using ideas from ieeelib) is about 10-15% faster than fp-bit and ieeelib about 1% faster than soft-fp, testing on IBM PowerPC 405 and 440. These are geometric mean measurements across EEMBC; some tests are several times faster with soft-fp than with fp-bit if they make heavy use of floating point, while others don't make significant use of floating point. Depending on the particular test, either soft-fp or ieeelib may be faster; for example, soft-fp is somewhat faster on Whetstone.

    One answer could be to take a look at the source code for glibc and see if you could salvage what you need.